First commit of the f# source code.
[master-thesis.git] / Parasitemia / Parasitemia / EEOver.fs
1 module EEOver
2
3 open System
4
5 let private EPS = 1.0e-5
6
7 let inline private ellipse2tr (x: float) (y: float) (aa: float) (bb: float) (cc: float) (dd: float) (ee: float) (ff: float) : float =
8 aa * x * x + bb * x * y + cc * y * y + dd * x + ee * y + ff
9
10 let private nointpts (a1: float) (b1: float) (a2: float) (b2: float) (h1: float) (k1: float) (h2: float) (k2: float) (phi_1: float) (phi_2: float) (h2_tr: float) (k2_tr: float) (aa: float) (bb: float) (cc: float) (dd: float) (ee: float) (ff: float) =
11 let a1b1 = a1 * b1
12 let a2b2 = a2 * b2
13 let area_1 = Math.PI * a1b1
14 let area_2 = Math.PI * a2b2
15 let relsize = a1b1 - a2b2
16
17 if relsize > 0.0
18 then
19 if (h2_tr * h2_tr) / (a1 * a1) + (k2_tr * k2_tr) / (b1 * b1) < 1.0
20 then area_2
21 else 0.0
22
23 elif relsize < 0.0
24 then
25 if ff < 0.0
26 then area_1
27 else 0.0
28
29 else
30 if abs (h1 - h2) < EPS && abs (k1 - k2) < EPS && abs (area_1 - area_2) < EPS
31 then area_1
32 else 0.0
33
34 type private PointType = TANGENT_POINT | INTERSECTION_POINT
35
36 let private istanpt (x: float) (y: float) (a1: float) (b1: float) (aa: float) (bb: float) (cc: float) (dd: float) (ee: float) (ff: float) : PointType =
37 let x =
38 if abs x > a1
39 then
40 if x < 0.0 then -a1 else a1
41 else x
42
43 let theta =
44 if y < 0.0
45 then 2.0 * Math.PI - acos (x / a1)
46 else acos (x / a1)
47
48 let eps_radian = 0.1
49
50 let x1 = a1 * cos (theta + eps_radian)
51 let y1 = b1 * sin (theta + eps_radian)
52 let x2 = a1 * cos (theta - eps_radian)
53 let y2 = b1 * sin (theta - eps_radian)
54
55 let test1 = ellipse2tr x1 y1 aa bb cc dd ee ff
56 let test2 = ellipse2tr x2 y2 aa bb cc dd ee ff
57
58 if test1 * test2 > 0.0
59 then TANGENT_POINT
60 else INTERSECTION_POINT
61
62
63 let private twointpts (x: float[]) (y: float[]) (a1: float) (b1: float) (phi_1: float) (a2: float) (b2: float) (h2_tr: float) (k2_tr: float) (phi_2: float) (aa: float) (bb: float) (cc: float) (dd: float) (ee: float) (ff: float) =
64 if abs x.[0] > a1
65 then x.[0] <- if x.[0] < 0.0 then -a1 else a1
66
67 let mutable theta1 =
68 if y.[0] < 0.0
69 then 2.0 * Math.PI - acos (x.[0] / a1)
70 else acos (x.[0] / a1)
71
72 if abs x.[1] > a1
73 then x.[1] <- if x.[1] < 0.0 then -a1 else a1
74
75 let mutable theta2 =
76 if y.[1] < 0.0
77 then 2.0 * Math.PI - acos (x.[1] / a1)
78 else acos (x.[1] / a1)
79
80 if theta1 > theta2
81 then
82 let tmp = theta1
83 theta1 <- theta2
84 theta2 <- tmp
85
86 let xmid = a1 * cos ((theta1 + theta2) / 2.0)
87 let ymid = b1 * sin ((theta1 + theta2) / 2.0)
88
89 if ellipse2tr xmid ymid aa bb cc dd ee ff > 0.0
90 then
91 let tmp = theta1
92 theta1 <- theta2
93 theta2 <- tmp
94
95 if theta1 > theta2
96 then
97 theta1 <- theta1 - 2.0 * Math.PI
98
99 let trsign = if (theta2 - theta1) > Math.PI then 1.0 else -1.0
100
101 let mutable area1 = 0.5 * (a1 * b1 * (theta2 - theta1) + trsign * abs (x.[0] * y.[1] - x.[1] * y.[0]))
102
103 if area1 < 0.0
104 then
105 area1 <- area1 + a1 * b1
106
107 let cosphi = cos (phi_1 - phi_2)
108 let sinphi = sin (phi_1 - phi_2)
109
110 let mutable x1_tr = (x.[0] - h2_tr) * cosphi + (y.[0] - k2_tr) * -sinphi
111 let mutable y1_tr = (x.[0] - h2_tr) * sinphi + (y.[0] - k2_tr) * cosphi
112 let mutable x2_tr = (x.[1] - h2_tr) * cosphi + (y.[1] - k2_tr) * -sinphi
113 let mutable y2_tr = (x.[1] - h2_tr) * sinphi + (y.[1] - k2_tr) * cosphi
114
115 if abs x1_tr > a2
116 then
117 x1_tr <- if x1_tr < 0.0 then -a2 else a2
118
119 if y1_tr < 0.0
120 then
121 theta1 <- 2.0 * Math.PI - acos (x1_tr / a2)
122 else
123 theta1 <- acos (x1_tr / a2)
124
125 if abs x2_tr > a2
126 then
127 x2_tr <- if x2_tr < 0.0 then -a2 else a2
128
129 if y2_tr < 0.0
130 then
131 theta2 <- 2.0 * Math.PI - acos (x2_tr / a2)
132 else
133 theta2 <- acos (x2_tr / a2)
134
135 if theta1 > theta2
136 then
137 let tmp = theta1
138 theta1 <- theta2
139 theta2 <- tmp
140
141 let xmid = a2 * cos ((theta1 + theta2) / 2.0)
142 let ymid = b2 * sin ((theta1 + theta2) / 2.0)
143
144 let cosphi = cos (phi_2 - phi_1)
145 let sinphi = sin (phi_2 - phi_1)
146 let xmid_rt = xmid * cosphi + ymid * -sinphi + h2_tr
147 let ymid_rt = xmid * sinphi + ymid * cosphi + k2_tr
148
149 if (xmid_rt * xmid_rt) / (a1 * a1) + (ymid_rt * ymid_rt) / (b1 * b1) > 1.0
150 then
151 let tmp = theta1
152 theta1 <- theta2
153 theta2 <- tmp
154
155 if theta1 > theta2
156 then
157 theta1 <- theta1 - 2.0 * Math.PI
158
159 let trsign = if theta2 - theta1 > Math.PI then 1.0 else -1.0
160
161 let mutable area2 = 0.5 * (a2 * b2 * (theta2 - theta1) + trsign * abs (x1_tr * y2_tr - x2_tr * y1_tr))
162 if area2 < 0.0
163 then
164 area2 <- area2 + a2 * b2
165
166 area1 + area2
167
168
169 let private threeintpts (xint: float[]) (yint: float[]) (a1: float) (b1: float) (phi_1: float) (a2: float) (b2: float) (h2_tr: float) (k2_tr: float) (phi_2: float) (aa: float) (bb: float) (cc: float) (dd: float) (ee: float) (ff: float) : float =
170 let mutable tanpts = 0
171 let mutable tanindex = 0
172 for i in 0..2 do
173 if istanpt xint.[i] yint.[i] a1 b2 aa bb cc dd ee ff = TANGENT_POINT
174 then
175 tanpts <- tanpts + 1;
176 tanindex <- i;
177
178 if tanpts <> 1
179 then
180 -1.0
181 else
182 match tanindex with
183 | 0 ->
184 xint.[0] <- xint.[2]
185 yint.[0] <- yint.[2]
186 | 1 ->
187 xint.[1] <- xint.[2]
188 yint.[1] <- yint.[2]
189 | _ ->
190 ()
191 twointpts xint yint a1 b1 phi_1 a2 b2 h2_tr k2_tr phi_2 aa bb cc dd ee ff
192
193
194 let private fourintpts (xint: float[]) (yint: float[]) (a1: float) (b1: float) (phi_1: float) (a2: float) (b2: float) (h2_tr: float) (k2_tr: float) (phi_2: float) (aa: float) (bb: float) (cc: float) (dd: float) (ee: float) (ff: float) : float =
195 let a1b1 = a1 * b1
196 let a2b2 = a2 * b2
197 let area_1 = Math.PI * a1b1
198 let area_2 = Math.PI * a2b2
199
200 let theta = Array.zeroCreate 4
201
202 for i in 0..3 do
203 if abs xint.[i] > a1
204 then
205 xint.[i] <- if xint.[i] < 0.0 then -a1 else a1
206 theta.[i] <- if yint.[i] < 0.0 then 2.0 * Math.PI - acos (xint.[i] / a1) else acos (xint.[i] / a1)
207
208 for j in 1..3 do
209 let tmp0 = theta.[j]
210 let tmp1 = xint.[j]
211 let tmp2 = yint.[j]
212
213 let mutable k = j - 1
214 while k >= 0 do
215 if theta.[k] <= tmp0
216 then
217 k <- -1
218 else
219 theta.[k+1] <- theta.[k]
220 xint.[k+1] <- xint.[k]
221 yint.[k+1] <- yint.[k]
222 k <- k - 1
223
224 theta.[k+1] <- tmp0
225 xint.[k+1] <- tmp1
226 yint.[k+1] <- tmp2
227
228 let area1 = 0.5 * abs ((xint.[2] - xint.[0]) * (yint.[3] - yint.[1]) - (xint.[3] - xint.[1]) * (yint.[2] - yint.[0]))
229
230 let cosphi = cos (phi_1 - phi_2)
231 let sinphi = sin (phi_1 - phi_2)
232
233 let theta_tr = Array.zeroCreate 4
234 let xint_tr = Array.zeroCreate 4
235 let yint_tr = Array.zeroCreate 4
236
237 for i in 0..3 do
238 xint_tr.[i] <- (xint.[i] - h2_tr) * cosphi + (yint.[i] - k2_tr) * -sinphi
239 yint_tr.[i] <- (xint.[i] - h2_tr) * sinphi + (yint.[i] - k2_tr) * cosphi
240
241 if abs xint_tr.[i] > a2
242 then
243 xint_tr.[i] <- if xint_tr.[i] < 0.0 then -a2 else a2
244
245 theta_tr.[i] <- if yint_tr.[i] < 0.0 then 2.0 * Math.PI - acos (xint_tr.[i] / a2) else acos (xint_tr.[i] / a2)
246
247 let xmid = a1 * cos ((theta.[0] + theta.[1]) / 2.0)
248 let ymid = b1 * sin ((theta.[0] + theta.[1]) / 2.0)
249
250 let mutable area2, area3, area4, area5 = 0.0, 0.0, 0.0, 0.0
251
252 if ellipse2tr xmid ymid aa bb cc dd ee ff < 0.0
253 then
254 area2 <- 0.5 * (a1b1 * (theta.[1] - theta.[0]) - abs (xint.[0] * yint.[1] - xint.[1] * yint.[0]))
255 area4 <- 0.5 * (a2b2 * (theta_tr.[2] - theta_tr.[1]) - abs (xint_tr.[1] * yint_tr.[2] - xint_tr.[2] * yint_tr.[1]))
256
257 if theta_tr.[3] > theta_tr.[0]
258 then
259 area5 <- 0.5 * (a2b2 * (theta_tr.[0] - (theta_tr.[3] - 2.0 * Math.PI)) - abs (xint_tr.[3] * yint_tr.[0] - xint_tr.[0] * yint_tr.[3]))
260 else
261 area5 <- 0.5 * (a2b2 * (theta_tr.[0] - theta_tr.[3]) - abs (xint_tr.[3] * yint_tr.[0] - xint_tr.[0] * yint_tr.[3]))
262 else
263 area2 <- 0.5 * (a1b1 * (theta.[2] - theta.[1]) - abs (xint.[1] * yint.[2] - xint.[2] * yint.[1]))
264 area3 <- 0.5 * (a1b1 * (theta.[0] - (theta.[3] - 2.0 * Math.PI)) - abs (xint.[3] * yint.[0] - xint.[0] * yint.[3]))
265 area4 <- 0.5 * (a2b2 * (theta_tr.[1] - theta_tr.[0]) - abs (xint_tr.[0] * yint_tr.[1] - xint_tr.[1] * yint_tr.[0]))
266 area5 <- 0.5 * (a2b2 * (theta_tr.[3] - theta_tr.[2]) - abs (xint_tr.[2] * yint_tr.[3] - xint_tr.[3] * yint_tr.[2]))
267
268 if area5 < 0.0
269 then
270 area5 <- area5 + area_2
271
272 if area4 < 0.0
273 then
274 area4 <- area4 + area_2
275
276 if area3 < 0.0
277 then
278 area3 <- area3 + area_1
279
280 if area2 < 0.0
281 then
282 area2 <- area2 + area_1
283
284 area1 + area2 + area3 + area4 + area5
285
286
287 let private quadroots (p: float[]) (r: float[,]) =
288 let mutable b = -p.[1] / (2.0 * p.[0])
289 let c = p.[2] / p.[0]
290 let mutable d = b * b - c
291
292 if d >= 0.0
293 then
294 if b > 0.0
295 then
296 b <- sqrt d + b
297 r.[1, 2] <- b
298 else
299 b <- -sqrt d + b
300 r.[1, 2] <- b
301 r.[1, 1] <- c / b
302 r.[2, 1] <- 0.0
303 r.[2, 2] <- 0.0
304 else
305 d <- sqrt -d
306 r.[2, 1] <- d
307 r.[2, 2] <- -d
308 r.[1, 1] <- b
309 r.[1, 2] <- b
310
311 let private cubicroots (p: float[]) (r: float[,]) =
312 if p.[0] <> 1.0 then
313 for k in 1..3 do
314 p.[k] <- p.[k] / p.[0]
315 p.[0] <- 1.0
316 let s = p.[1] / 3.0
317 let mutable t = s * p.[1]
318 let mutable b = 0.5 * (s * (t / 1.5 - p.[2]) + p.[3])
319 t <- (t - p.[2]) / 3.0
320 let mutable c = t * t * t
321 let mutable d = b * b - c
322
323 if d >= 0.0
324 then
325 d <- ((sqrt d) + (abs b)) ** (1.0 / 3.0)
326 if d <> 0.0
327 then
328 if b > 0.0
329 then b <- -d
330 else b <- d
331 c <- t / b
332 d <- sqrt(0.75) * (b - c)
333 r.[2, 2] <- d
334 b <- b + c
335 c <- -0.5 * b - s
336 r.[1, 2] <- c
337 if b > 0.0 && s <= 0.0 || b < 0.0 && s > 0.0
338 then
339 r.[1, 1] <- c
340 r.[2, 1] <- -d
341 r.[1, 3] <- b - s
342 r.[2, 3] <- 0.0
343 else
344 r.[1, 1] <- b - s
345 r.[2, 1] <- 0.0
346 r.[1, 3] <- c
347 r.[2, 3] <- -d
348 else
349 if b = 0.0
350 then d <- (atan 1.0) / 1.5
351 else d <- atan ((sqrt -d) / (abs b)) / 3.0
352
353 if b < 0.0
354 then b <- 2.0 * (sqrt t)
355 else b <- -2.0 * (sqrt t)
356
357 c <- (cos d) * b
358 t <- -(sqrt 0.75) * (sin d) * b - 0.5 * c
359 d <- -t - c - s
360 c <- c - s
361 t <- t - s
362
363 if abs c > abs t
364 then
365 r.[1, 3] <- c
366 else
367 r.[1, 3] <- t
368 t <- c
369
370 if abs d > abs t
371 then
372 r.[1, 2] <- d
373 else
374 r.[1, 2] <- t
375 t <- d
376
377 r.[1, 1] <- t
378 for k in 1..3 do
379 r.[2, k] <- 0.0
380
381
382 let private biquadroots (p: float[]) (r: float[,]) =
383 if p.[0] <> 1.0
384 then
385 for k in 1..4 do
386 p.[k] <- p.[k] / p.[0]
387 p.[0] <- 1.0
388 let e = 0.25 * p.[1]
389 let b = ref (2.0 * e)
390 let c = ref (!b ** 2.0)
391 let mutable d = 0.75 * !c
392 b := p.[3] + !b *(!c - p.[2])
393 let mutable a = p.[2] - d
394 c := p.[4] + e * (e * a - p.[3])
395 a <- a - d
396
397 let quadExecuted = ref false
398 let quad () =
399 if not !quadExecuted
400 then
401 p.[2] <- !c / !b
402 quadroots p r
403 for k in 1..2 do
404 for j in 1..2 do
405 r.[j, k+2] <- r.[j, k]
406 p.[1] <- -p.[1]
407 p.[2] <- !b
408 quadroots p r
409 for k in 1..4 do
410 r.[1,k] <- r.[1,k] - e
411 quadExecuted := true
412
413 p.[1] <- 0.5 * a
414 p.[2] <- (p.[1] * p.[1] - !c) * 0.25
415 p.[3] <- !b * !b / -64.0
416 if p.[3] < 0.0
417 then
418 cubicroots p r
419 let mutable k = 1
420 while k < 4 do
421 if r.[2, k] = 0.0 && r.[1, k] > 0.0
422 then
423 d <- r.[1, k] * 4.0
424 a <- a + d
425 if a >= 0.0 && !b >= 0.0
426 then
427 p.[1] <- sqrt d
428 elif a <= 0.0 && !b <= 0.0
429 then
430 p.[1] <- sqrt d
431 else
432 p.[1] <- -(sqrt d)
433 b := 0.5 * (a + !b / p.[1])
434 quad ()
435 k <- 4
436 k <- k + 1
437
438 if not !quadExecuted && p.[2] < 0.0
439 then
440 b := sqrt !c
441 d <- !b + !b - a
442 p.[1] <- 0.0
443 if d > 0.0
444 then
445 p.[1] <- sqrt d
446 elif not !quadExecuted
447 then
448 if p.[1] > 0.0
449 then
450 b := (sqrt p.[2]) * 2.0 + p.[1]
451 else
452 b := -(sqrt p.[2]) * 2.0 + p.[1]
453
454 if !b <> 0.0
455 then
456 p.[1] <- 0.0
457 else
458 for k in 1..4 do
459 r.[1, k] <- -e
460 r.[2, k] <- 0.0
461 quadExecuted := true
462
463 quad ()
464
465
466 open Types
467
468 let EEOverlapArea (e1: Ellipse) (e2: Ellipse) : float =
469 let { cx = h1; cy = k1; a = a1; b = b1; alpha = phi_1 } = e1
470 let { cx = h2; cy = k2; a = a2; b = b2; alpha = phi_2 } = e2
471
472 if a1 <= EPS || b1 <= EPS || a2 <= EPS || b2 <= EPS
473 then
474 -1.0
475 else
476 let phi_1 = phi_1 % Math.PI
477 let phi_2 = phi_2 % Math.PI
478 let h2_tr, k2_tr, phi_2r =
479 let cosphi = cos phi_1
480 let sinphi = sin phi_1
481 (h2 - h1) * cosphi + (k2 - k1) * sinphi, (h1 - h2) * sinphi + (k2 - k1) * cosphi, (phi_2 - phi_1) % (2.0 * Math.PI)
482
483 let cosphi = cos phi_2r
484 let cosphi2 = cosphi ** 2.0
485 let sinphi = sin phi_2r
486 let sinphi2 = sinphi ** 2.0
487 let cosphisinphi = 2.0 * cosphi * sinphi
488 let a22 = a2 ** 2.0
489 let b22 = b2 ** 2.0
490 let tmp0 = (cosphi * h2_tr + sinphi * k2_tr) / a22
491 let tmp1 = (sinphi * h2_tr - cosphi * k2_tr) / b22
492 let tmp2 = cosphi * h2_tr + sinphi * k2_tr
493 let tmp3 = sinphi * h2_tr - cosphi * k2_tr
494
495 let aa = cosphi2 / a22 + sinphi2 / b22
496 let bb = cosphisinphi / a22 - cosphisinphi / b22
497 let cc = sinphi2 / a22 + cosphi2 / b22
498 let dd = -2.0 * cosphi * tmp0 - 2.0 * sinphi * tmp1
499 let ee = -2.0 * sinphi * tmp0 + 2.0 * cosphi * tmp1
500 let ff = tmp2 * tmp2 / a22 + tmp3 * tmp3 / b22 - 1.0
501
502 let cy = [|
503 (a1 * (a1 * aa - dd) + ff) * (a1 * (a1 * aa + dd) + ff)
504 2.0 * b1 * (a1 * a1 * (aa * ee - bb * dd) + ee * ff)
505 a1 * a1 * ((b1 * b1 * (2.0 * aa * cc - bb * bb) + dd * dd - 2.0 * aa * ff) - 2.0 * a1 * a1 * aa * aa) + b1 * b1 * (2.0 * cc * ff + ee * ee)
506 2.0 * b1 * (b1 * b1 * cc * ee + a1 * a1 * (bb * dd - aa * ee))
507 a1 * a1 * a1 * a1 * aa * aa + b1 * b1 * (a1 * a1 * (bb * bb - 2.0 * aa * cc) + b1 * b1 * cc * cc)
508 |]
509
510 let py = Array.zeroCreate<float> 5
511 let r = Array2D.zeroCreate<float> 3 5
512
513 let nroots =
514 if abs cy.[4] > EPS
515 then
516 for i in 0 .. 3 do
517 py.[4-i] <- cy.[i] / cy.[4]
518 py.[0] <- 1.0
519 biquadroots py r
520 4
521
522 elif abs cy.[3] > EPS
523 then
524 for i in 0..2 do
525 py.[3 - i] <- cy.[i] / cy.[3]
526 py.[0] <- 1.0
527 cubicroots py r
528 3
529
530 elif abs cy.[2] > EPS
531 then
532 for i in 0..1 do
533 py.[2-i] <- cy.[i] / cy.[2]
534 py.[0] <- 1.0
535 quadroots py r
536 2
537
538 elif abs cy.[1] > EPS
539 then
540 r.[1, 1] <- -cy.[0] / cy.[1]
541 r.[2, 1] <- 0.0
542 1
543
544 else
545 0
546
547 let ychk = [|
548 for i in 1 .. nroots do
549 if abs r.[2, i] < EPS
550 then
551 yield r.[1, i] * b1
552 |]
553 Array.sortInPlace ychk
554
555 let nychk = Array.length ychk
556 let mutable nintpts = 0
557
558 let xint = Array.zeroCreate 4
559 let yint = Array.zeroCreate 4
560
561 let mutable returnValue = 0.0
562
563 let mutable i = 0
564 while returnValue = 0.0 && i < nychk do
565 if not (i < nychk - 1 && abs (ychk.[i] - ychk.[i+1]) < EPS / 2.0)
566 then
567 let x1 = if abs ychk.[i] > b1 then 0.0 else a1 * sqrt (1.0 - (ychk.[i] * ychk.[i]) / (b1 * b1))
568 let x2 = -x1
569
570 if abs (ellipse2tr x1 ychk.[i] aa bb cc dd ee ff) < EPS
571 then
572 nintpts <- nintpts + 1
573 if nintpts > 4
574 then
575 returnValue <- -1.0
576 else
577 xint.[nintpts-1] <- x1
578 yint.[nintpts-1] <- ychk.[i]
579
580 if returnValue <> -1.0 && abs (ellipse2tr x2 ychk.[i] aa bb cc dd ee ff) < EPS && abs (x2 - x1) > EPS
581 then
582 nintpts <- nintpts + 1
583 if nintpts > 4
584 then
585 returnValue <- -1.0
586 else
587 xint.[nintpts-1] <- x2
588 yint.[nintpts-1] <- ychk.[i]
589 i <- i + 1
590
591
592 if returnValue = -1.0
593 then
594 returnValue
595 else
596 match nintpts with
597 | 0 | 1 -> nointpts a1 b1 a2 b2 h1 k1 h2 k2 phi_1 phi_2 h2_tr k2_tr aa bb cc dd ee ff
598 | 2 -> match istanpt xint.[0] yint.[0] a1 b1 aa bb cc dd ee ff with
599 | TANGENT_POINT -> nointpts a1 b1 a2 b2 h1 k1 h2 k2 phi_1 phi_2 h2_tr k2_tr aa bb cc dd ee ff
600 | INTERSECTION_POINT -> twointpts xint yint a1 b1 phi_1 a2 b2 h2_tr k2_tr phi_2 aa bb cc dd ee ff
601 | 3 -> threeintpts xint yint a1 b1 phi_1 a2 b2 h2_tr k2_tr phi_2 aa bb cc dd ee ff
602 | 4 -> fourintpts xint yint a1 b1 phi_1 a2 b2 h2_tr k2_tr phi_2 aa bb cc dd ee ff
603 | _ -> -1.0
604