Use float32 images instead of byte to improve the edge detection precision.
[master-thesis.git] / Parasitemia / Parasitemia / ImgTools.fs
index f7e5a4a..cee21c7 100644 (file)
@@ -3,11 +3,13 @@
 open System
 open System.Drawing
 open System.Collections.Generic
+open System.Linq
 
 open Emgu.CV
 open Emgu.CV.Structure
 
 open Utils
+open Heap
 
 // Normalize image values between 0uy and 255uy.
 let normalizeAndConvert (img: Image<Gray, float32>) : Image<Gray, byte> =
@@ -18,10 +20,651 @@ let normalizeAndConvert (img: Image<Gray, float32>) : Image<Gray, byte> =
     img.MinMax(min, max, minLocation, maxLocation)
     ((img - (!min).[0]) / ((!max).[0] - (!min).[0]) * 255.0).Convert<Gray, byte>()
 
+
+let saveImg (img: Image<'TColor, 'TDepth>) (filepath: string) =
+    img.Save(filepath)
+
+
+let saveMat (mat: Matrix<'TDepth>) (filepath: string) =
+    use img = new Image<Gray, 'TDeph>(mat.Size)
+    mat.CopyTo(img)
+    saveImg img filepath
+
+
+let suppressMConnections (img: Matrix<byte>) =
+    let w = img.Width
+    let h = img.Height
+    for i in 1 .. h - 2 do
+        for j in 1 .. w - 2 do
+            if img.[i, j] > 0uy && img.Data.[i + 1, j] > 0uy && (img.Data.[i, j - 1] > 0uy && img.Data.[i - 1, j + 1] = 0uy || img.Data.[i, j + 1] > 0uy && img.Data.[i - 1, j - 1] = 0uy)
+            then
+                img.[i, j] <- 0uy
+    for i in 1 .. h - 2 do
+        for j in 1 .. w - 2 do
+            if img.[i, j] > 0uy && img.Data.[i - 1, j] > 0uy && (img.Data.[i, j - 1] > 0uy && img.Data.[i + 1, j + 1] = 0uy || img.Data.[i, j + 1] > 0uy && img.Data.[i + 1, j - 1] = 0uy)
+            then
+                img.[i, j] <- 0uy
+
+let findEdges (img: Image<Gray, float32>) : Matrix<byte> * Image<Gray, float> * Image<Gray, float> =
+    let w = img.Width
+    let h = img.Height
+
+    use sobelKernel =
+        new ConvolutionKernelF(array2D [[ 1.0f; 0.0f; -1.0f ]
+                                        [ 2.0f; 0.0f; -2.0f ]
+                                        [ 1.0f; 0.0f; -1.0f ]], Point(1, 1))
+
+    let xGradient = img.Convolution(sobelKernel).Convert<Gray, float>()
+    let yGradient = img.Convolution(sobelKernel.Transpose()).Convert<Gray, float>()
+
+    let xGradientData = xGradient.Data
+    let yGradientData = yGradient.Data
+    for r in 0 .. h - 1 do
+        xGradientData.[r, 0, 0] <- 0.0
+        xGradientData.[r, w - 1, 0] <- 0.0
+        yGradientData.[r, 0, 0] <- 0.0
+        yGradientData.[r, w - 1, 0] <- 0.0
+
+    for c in 0 .. w - 1 do
+        xGradientData.[0, c, 0] <- 0.0
+        xGradientData.[h - 1, c, 0] <- 0.0
+        yGradientData.[0, c, 0] <- 0.0
+        yGradientData.[h - 1, c, 0] <- 0.0
+
+    use magnitudes = new Matrix<float>(xGradient.Size)
+    use angles = new Matrix<float>(xGradient.Size)
+    CvInvoke.CartToPolar(xGradient, yGradient, magnitudes, angles) // Compute the magnitudes (without angles).
+
+    let thresholdHigh, thresholdLow =
+        let sensibility = 0.1
+        use magnitudesByte = magnitudes.Convert<byte>()
+        let threshold = CvInvoke.Threshold(magnitudesByte, magnitudesByte, 0.0, 1.0, CvEnum.ThresholdType.Otsu ||| CvEnum.ThresholdType.Binary)
+        threshold + (sensibility * threshold), threshold - (sensibility * threshold)
+
+    // Non-maximum suppression.
+    use nms = new Matrix<byte>(xGradient.Size)
+
+    for i in 0 .. h - 1 do
+        nms.Data.[i, 0] <- 0uy
+        nms.Data.[i, w - 1] <- 0uy
+
+    for j in 0 .. w - 1 do
+        nms.Data.[0, j] <- 0uy
+        nms.Data.[h - 1, j] <- 0uy
+
+    for i in 1 .. h - 2 do
+        for j in 1 .. w - 2 do
+            let vx = xGradient.Data.[i, j, 0]
+            let vy = yGradient.Data.[i, j, 0]
+            if vx <> 0. || vy <> 0.
+            then
+                let angle = angles.[i, j]
+
+                let vx', vy' = abs vx, abs vy
+                let ratio2 = if vx' > vy' then vy' / vx' else vx' / vy'
+                let ratio1 = 1. - ratio2
+
+                let mNeigbors (sign: int) : float =
+                    if angle < Math.PI / 4.
+                    then
+                        ratio1 * magnitudes.Data.[i, j + sign] + ratio2 * magnitudes.Data.[i + sign, j + sign]
+                    elif angle < Math.PI / 2.
+                    then
+                        ratio2 * magnitudes.Data.[i + sign, j + sign] + ratio1 * magnitudes.Data.[i + sign, j]
+                    elif angle < 3.0 * Math.PI / 4.
+                    then
+                        ratio1 * magnitudes.Data.[i + sign, j] + ratio2 * magnitudes.Data.[i + sign, j - sign]
+                    elif angle < Math.PI
+                    then
+                        ratio2 * magnitudes.Data.[i + sign, j - sign] + ratio1 * magnitudes.Data.[i, j - sign]
+                    elif angle < 5. * Math.PI / 4.
+                    then
+                        ratio1 * magnitudes.Data.[i, j - sign] + ratio2 * magnitudes.Data.[i - sign, j - sign]
+                    elif angle < 3. * Math.PI / 2.
+                    then
+                        ratio2 * magnitudes.Data.[i - sign, j - sign] + ratio1 * magnitudes.Data.[i - sign, j]
+                    elif angle < 7. * Math.PI / 4.
+                    then
+                        ratio1 * magnitudes.Data.[i - sign, j] + ratio2 * magnitudes.Data.[i - sign, j + sign]
+                    else
+                        ratio2 * magnitudes.Data.[i - sign, j + sign] + ratio1 * magnitudes.Data.[i, j + sign]
+
+                let m = magnitudes.Data.[i, j]
+                if m >= thresholdLow && m > mNeigbors 1 && m > mNeigbors -1
+                then
+                    nms.Data.[i, j] <- 1uy
+
+    // suppressMConnections nms // It's not helpful for the rest of the process (ellipse detection).
+
+    let edges = new Matrix<byte>(xGradient.Size)
+
+    // Histeresis thresholding.
+    let toVisit = Stack<Point>()
+    for i in 0 .. h - 1 do
+        for j in 0 .. w - 1 do
+            if nms.Data.[i, j] = 1uy && magnitudes.Data.[i, j] >= thresholdHigh
+            then
+                nms.Data.[i, j] <- 0uy
+                toVisit.Push(Point(j, i))
+                while toVisit.Count > 0 do
+                    let p = toVisit.Pop()
+                    edges.Data.[p.Y, p.X] <- 1uy
+                    for i' in -1 .. 1  do
+                        for j' in -1 .. 1 do
+                            if i' <> 0 || j' <> 0
+                            then
+                                let ni = p.Y + i'
+                                let nj = p.X + j'
+                                if ni >= 0 && ni < h && nj >= 0 && nj < w && nms.Data.[ni, nj] = 1uy
+                                then
+                                    nms.Data.[ni, nj] <- 0uy
+                                    toVisit.Push(Point(nj, ni))
+
+    edges, xGradient, yGradient
+
+
 let gaussianFilter (img : Image<'TColor, 'TDepth>) (standardDeviation : float) : Image<'TColor, 'TDepth> =
     let size = 2 * int (ceil (4.0 * standardDeviation)) + 1
     img.SmoothGaussian(size, size, standardDeviation, standardDeviation)
 
+
+type Points = HashSet<Point>
+
+let drawPoints (img: Image<Gray, 'TDepth>) (points: Points) (intensity: 'TDepth) =
+    for p in points do
+        img.Data.[p.Y, p.X, 0] <- intensity
+
+type ExtremumType =
+    | Maxima = 1
+    | Minima = 2
+
+let findExtremum (img: Image<Gray, 'TDepth>) (extremumType: ExtremumType) : IEnumerable<Points> =
+    let w = img.Width
+    let h = img.Height
+    let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+    let imgData = img.Data
+    let suppress: bool[,] = Array2D.zeroCreate h w
+
+    let result = List<List<Point>>()
+
+    let flood (start: Point) : List<List<Point>> =
+        let sameLevelToCheck = Stack<Point>()
+        let betterLevelToCheck = Stack<Point>()
+        betterLevelToCheck.Push(start)
+
+        let result' = List<List<Point>>()
+
+        while betterLevelToCheck.Count > 0 do
+            let p = betterLevelToCheck.Pop()
+            if not suppress.[p.Y, p.X]
+            then
+                suppress.[p.Y, p.X] <- true
+                sameLevelToCheck.Push(p)
+                let current = List<Point>()
+
+                let mutable betterExists = false
+
+                while sameLevelToCheck.Count > 0 do
+                    let p' = sameLevelToCheck.Pop()
+                    let currentLevel = imgData.[p'.Y, p'.X, 0]
+                    current.Add(p') |> ignore
+                    for i, j in se do
+                        let ni = i + p'.Y
+                        let nj = j + p'.X
+                        if ni >= 0 && ni < h && nj >= 0 && nj < w
+                        then
+                            let level = imgData.[ni, nj, 0]
+                            let notSuppressed = not suppress.[ni, nj]
+
+                            if level = currentLevel && notSuppressed
+                            then
+                                suppress.[ni, nj] <- true
+                                sameLevelToCheck.Push(Point(nj, ni))
+                            elif if extremumType = ExtremumType.Maxima then level > currentLevel else level < currentLevel
+                            then
+                                betterExists <- true
+                                if notSuppressed
+                                then
+                                    betterLevelToCheck.Push(Point(nj, ni))
+
+                if not betterExists
+                then
+                    result'.Add(current)
+        result'
+
+    for i in 0 .. h - 1 do
+        for j in 0 .. w - 1 do
+            let maxima = flood (Point(j, i))
+            if maxima.Count > 0
+            then
+                result.AddRange(maxima)
+
+    result.Select(fun l -> Points(l))
+
+
+let findMaxima (img: Image<Gray, 'TDepth>) : IEnumerable<Points> =
+    findExtremum img ExtremumType.Maxima
+
+
+let findMinima (img: Image<Gray, 'TDepth>) : IEnumerable<Points> =
+    findExtremum img ExtremumType.Minima
+
+
+type PriorityQueue () =
+    let size = 256
+    let q: Points[] = Array.init size (fun i -> Points())
+    let mutable highest = -1 // Value of the first elements of 'q'.
+    let mutable lowest = size
+
+    member this.NextMax () : byte * Point =
+        if this.IsEmpty
+        then
+            invalidOp "Queue is empty"
+        else
+            let l = q.[highest]
+            let next = l.First()
+            l.Remove(next) |> ignore
+            let value = byte highest
+
+            if l.Count = 0
+            then
+                highest <- highest - 1
+                while highest > lowest && q.[highest].Count = 0 do
+                    highest <- highest - 1
+                if highest = lowest
+                then
+                    highest <- -1
+                    lowest <- size
+
+            value, next
+
+    member this.NextMin () : byte * Point =
+        if this.IsEmpty
+        then
+            invalidOp "Queue is empty"
+        else
+            let l = q.[lowest + 1]
+            let next = l.First()
+            l.Remove(next) |> ignore
+            let value = byte (lowest + 1)
+
+            if l.Count = 0
+            then
+                lowest <- lowest + 1
+                while lowest < highest && q.[lowest + 1].Count = 0 do
+                    lowest <- lowest + 1
+                if highest = lowest
+                then
+                    highest <- -1
+                    lowest <- size
+
+            value, next
+
+    member this.Max =
+        highest |> byte
+
+    member this.Min =
+        lowest + 1 |> byte
+
+    member this.Add (value: byte) (p: Point) =
+        let vi = int value
+
+        if vi > highest
+        then
+            highest <- vi
+        if vi <= lowest
+        then
+            lowest <- vi - 1
+
+        q.[vi].Add(p) |> ignore
+
+    member this.Remove (value: byte) (p: Point) =
+        let vi = int value
+        if q.[vi].Remove(p) && q.[vi].Count = 0
+        then
+            if vi = highest
+            then
+                highest <- highest - 1
+                while highest > lowest && q.[highest].Count = 0 do
+                    highest <- highest - 1
+            elif vi - 1 = lowest
+            then
+                lowest <- lowest + 1
+                while lowest < highest && q.[lowest + 1].Count = 0 do
+                    lowest <- lowest + 1
+
+            if highest = lowest // The queue is now empty.
+            then
+                highest <- -1
+                lowest <- size
+
+    member this.IsEmpty =
+        highest = -1
+
+    member this.Clear () =
+        while highest > lowest  do
+            q.[highest].Clear()
+            highest <- highest - 1
+        highest <- -1
+        lowest <- size
+
+
+type private AreaState =
+    | Removed = 1
+    | Unprocessed = 2
+    | Validated = 3
+
+type private AreaOperation =
+    | Opening = 1
+    | Closing = 2
+
+[<AllowNullLiteral>]
+type private Area (elements: Points) =
+    member this.Elements = elements
+    member val Intensity = None with get, set
+    member val State = AreaState.Unprocessed with get, set
+
+let private areaOperation (img: Image<Gray, byte>) (area: int) (op: AreaOperation) =
+    let w = img.Width
+    let h = img.Height
+    let imgData = img.Data
+    let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+    let areas = List<Area>((if op = AreaOperation.Opening then findMaxima img else findMinima img) |> Seq.map Area)
+
+    let pixels: Area[,] = Array2D.create h w null
+    for m in areas do
+        for e in m.Elements do
+            pixels.[e.Y, e.X] <- m
+
+    let queue = PriorityQueue()
+
+    let addEdgeToQueue (elements: Points) =
+        for p in elements do
+            for i, j in se do
+                let ni = i + p.Y
+                let nj = j + p.X
+                let p' = Point(nj, ni)
+                if ni >= 0 && ni < h && nj >= 0 && nj < w && not (elements.Contains(p'))
+                then
+                    queue.Add (imgData.[ni, nj, 0]) p'
+
+    // Reverse order is quicker.
+    for i in areas.Count - 1 .. -1 .. 0 do
+        let m = areas.[i]
+        if m.Elements.Count <= area && m.State <> AreaState.Removed
+        then
+            queue.Clear()
+            addEdgeToQueue m.Elements
+
+            let mutable intensity = if op = AreaOperation.Opening then queue.Max else queue.Min
+            let nextElements = Points()
+
+            let mutable stop = false
+            while not stop do
+                let intensity', p = if op = AreaOperation.Opening then queue.NextMax () else queue.NextMin ()
+                let mutable merged = false
+
+                if intensity' = intensity // The intensity doesn't change.
+                then
+                    if m.Elements.Count + nextElements.Count + 1 > area
+                    then
+                        m.State <- AreaState.Validated
+                        m.Intensity <- Some intensity
+                        stop <- true
+                    else
+                        nextElements.Add(p) |> ignore
+
+                elif if op = AreaOperation.Opening then intensity' < intensity else intensity' > intensity
+                then
+                    m.Elements.UnionWith(nextElements)
+                    for e in nextElements do
+                        pixels.[e.Y, e.X] <- m
+
+                    if m.Elements.Count = area
+                    then
+                        m.State <- AreaState.Validated
+                        m.Intensity <- Some (intensity')
+                        stop <- true
+                    else
+                        intensity <- intensity'
+                        nextElements.Clear()
+                        nextElements.Add(p) |> ignore
+
+                else
+                    let m' = pixels.[p.Y, p.X]
+                    if m' <> null
+                    then
+                        if m'.Elements.Count + m.Elements.Count <= area
+                        then
+                            m'.State <- AreaState.Removed
+                            for e in m'.Elements do
+                                pixels.[e.Y, e.X] <- m
+                                queue.Remove imgData.[e.Y, e.X, 0] e
+                            addEdgeToQueue m'.Elements
+                            m.Elements.UnionWith(m'.Elements)
+                            let intensityMax = if op = AreaOperation.Opening then queue.Max else queue.Min
+                            if intensityMax <> intensity
+                            then
+                                intensity <- intensityMax
+                                nextElements.Clear()
+                            merged <- true
+
+                    if not merged
+                    then
+                        m.State <- AreaState.Validated
+                        m.Intensity <- Some (intensity)
+                        stop <- true
+
+                if not stop && not merged
+                then
+                    for i, j in se do
+                        let ni = i + p.Y
+                        let nj = j + p.X
+                        let p' = Point(nj, ni)
+                        if ni < 0 || ni >= h || nj < 0 || nj >= w
+                        then
+                            m.State <- AreaState.Validated
+                            m.Intensity <- Some (intensity)
+                            stop <- true
+                        elif not (m.Elements.Contains(p')) && not (nextElements.Contains(p'))
+                        then
+                            queue.Add (imgData.[ni, nj, 0]) p'
+
+                if queue.IsEmpty
+                then
+                    if m.Elements.Count + nextElements.Count <= area
+                    then
+                        m.State <- AreaState.Validated
+                        m.Intensity <- Some intensity'
+                        m.Elements.UnionWith(nextElements)
+                    stop <- true
+
+    for m in areas do
+        if m.State = AreaState.Validated
+        then
+            match m.Intensity with
+            | Some i ->
+                for p in m.Elements do
+                    imgData.[p.Y, p.X, 0] <- i
+            | _ -> ()
+    ()
+
+
+let areaOpen (img: Image<Gray, byte>) (area: int) =
+    areaOperation img area AreaOperation.Opening
+
+let areaClose (img: Image<Gray, byte>) (area: int) =
+    areaOperation img area AreaOperation.Closing
+
+[<AllowNullLiteral>]
+type Island (cmp: IComparer<float32>) =
+    member val Shore = Heap.Heap<float32, Point>(cmp) with get
+    member val Level = 0.f with get, set
+    member val Surface = 0 with get, set
+
+
+let private areaOperationF (img: Image<Gray, float32>) (area: int) (op: AreaOperation) =
+    let w = img.Width
+    let h = img.Height
+    let earth = img.Data
+    let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+    let comparer = if op = AreaOperation.Opening
+                   then { new IComparer<float32> with member this.Compare(v1, v2) = v1.CompareTo(v2) }
+                   else { new IComparer<float32> with member this.Compare(v1, v2) = v2.CompareTo(v1) }
+
+    let ownership: Island[,] = Array2D.create h w null
+
+    // Initialize islands with their shore.
+    let islands = List<Island>()
+    let extremum = img |> if op = AreaOperation.Opening then findMaxima else findMinima
+    for e in extremum do
+        let island =
+            let p = e.First()
+            Island(comparer, Level = earth.[p.Y, p.X, 0], Surface = e.Count)
+        islands.Add(island)
+        let shorePoints = Points()
+        for p in e do
+            ownership.[p.Y, p.X] <- island
+            for i, j in se do
+                let ni = i + p.Y
+                let nj = j + p.X
+                let neighbor = Point(nj, ni)
+                if ni >= 0 && ni < h && nj >= 0 && nj < w && ownership.[ni, nj] = null && not (shorePoints.Contains(neighbor))
+                then
+                    shorePoints.Add(neighbor) |> ignore
+                    island.Shore.Add earth.[ni, nj, 0] neighbor
+
+    for island in islands do
+        let mutable stop = island.Shore.IsEmpty
+
+        // 'true' if 'p' is owned or adjacent to 'island'.
+        let ownedOrAdjacent (p: Point) : bool =
+            ownership.[p.Y, p.X] = island ||
+            (p.Y > 0 && ownership.[p.Y - 1, p.X] = island) ||
+            (p.Y < h - 1 && ownership.[p.Y + 1, p.X] = island) ||
+            (p.X > 0 && ownership.[p.Y, p.X - 1] = island) ||
+            (p.X < w - 1 && ownership.[p.Y, p.X + 1] = island)
+
+        while not stop && island.Surface < area do
+            let level, next = island.Shore.Max
+            let other = ownership.[next.Y, next.X]
+            if other = island // During merging, some points on the shore may be owned by the island itself -> ignored.
+            then
+                island.Shore.RemoveNext ()
+            else
+                if other <> null
+                then // We touching another island.
+                    if island.Surface + other.Surface >= area
+                    then
+                        stop <- true
+                    else // We can merge 'other' into 'surface'.
+                        island.Surface <- island.Surface + other.Surface
+                        island.Level <- if comparer.Compare(island.Level, other.Level) > 0 then island.Level else other.Level
+                        for l, p in other.Shore do
+                            let mutable currentY = p.Y + 1
+                            while currentY < h && ownership.[currentY, p.X] = other do
+                                ownership.[currentY, p.X] <- island
+                                currentY <- currentY + 1
+                            island.Shore.Add l p
+                        other.Shore.Clear()
+
+                elif comparer.Compare(level, island.Level) > 0
+                then
+                    stop <- true
+                else
+                    island.Shore.RemoveNext ()
+                    for i, j in se do
+                        let ni = i + next.Y
+                        let nj = j + next.X
+                        if ni < 0 || ni >= h || nj < 0 || nj >= w
+                        then
+                            island.Surface <- Int32.MaxValue
+                            stop <- true
+                        else
+                            let neighbor = Point(nj, ni)
+                            if not <| ownedOrAdjacent neighbor
+                            then
+                                island.Shore.Add earth.[ni, nj, 0] neighbor
+                    if not stop
+                    then
+                        ownership.[next.Y, next.X] <- island
+                        island.Level <- level
+                        island.Surface <- island.Surface + 1
+
+    for i in 0 .. h - 1 do
+        for j in 0 .. w - 1 do
+            let island = ownership.[i, j]
+            if island <> null
+            then
+                earth.[i, j, 0] <- island.Level
+    ()
+
+
+let areaOpenF (img: Image<Gray, float32>) (area: int) =
+    areaOperationF img area AreaOperation.Opening
+
+let areaCloseF (img: Image<Gray, float32>) (area: int) =
+    areaOperationF img area AreaOperation.Closing
+
+// A simpler algorithm than 'areaOpen' but slower.
+let areaOpen2 (img: Image<Gray, byte>) (area: int) =
+    let w = img.Width
+    let h = img.Height
+    let imgData = img.Data
+    let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+    let histogram = Array.zeroCreate 256
+    for i in 0 .. h - 1 do
+        for j in 0 .. w - 1 do
+            let v = imgData.[i, j, 0] |> int
+            histogram.[v] <- histogram.[v] + 1
+
+    let flooded : bool[,] = Array2D.zeroCreate h w
+
+    let pointsChecked = HashSet<Point>()
+    let pointsToCheck = Stack<Point>()
+
+    for level in 255 .. -1 .. 0 do
+        let mutable n = histogram.[level]
+        if n > 0
+        then
+            for i in 0 .. h - 1 do
+                for j in 0 .. w - 1 do
+                    if not flooded.[i, j] && imgData.[i, j, 0] = byte level
+                    then
+                        let mutable maxNeighborValue = 0uy
+                        pointsChecked.Clear()
+                        pointsToCheck.Clear()
+                        pointsToCheck.Push(Point(j, i))
+
+                        while pointsToCheck.Count > 0 do
+                            let next = pointsToCheck.Pop()
+                            pointsChecked.Add(next) |> ignore
+                            flooded.[next.Y, next.X] <- true
+
+                            for nx, ny in se do
+                                let p = Point(next.X + nx, next.Y + ny)
+                                if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h
+                                then
+                                    let v = imgData.[p.Y, p.X, 0]
+                                    if v = byte level
+                                    then
+                                        if not (pointsChecked.Contains(p))
+                                        then
+                                            pointsToCheck.Push(p)
+                                    elif v > maxNeighborValue
+                                    then
+                                        maxNeighborValue <- v
+
+                        if int maxNeighborValue < level && pointsChecked.Count <= area
+                        then
+                            for p in pointsChecked do
+                                imgData.[p.Y, p.X, 0] <- maxNeighborValue
+
+
 // Zhang and Suen algorithm.
 // Modify 'mat' in place.
 let thin (mat: Matrix<byte>) =
@@ -73,11 +716,6 @@ let thin (mat: Matrix<byte>) =
         data2 <- tmp
 
 
-let pop (l: List<'a>) : 'a =
-    let n = l.[l.Count - 1]
-    l.RemoveAt(l.Count - 1)
-    n
-
 // Remove all 8-connected pixels with an area equal or greater than 'areaSize'.
 // Modify 'mat' in place.
 let removeArea (mat: Matrix<byte>) (areaSize: int) =
@@ -103,37 +741,37 @@ let removeArea (mat: Matrix<byte>) (areaSize: int) =
         for j in 0..w-1 do
             if data'.[i, j] = 1uy
             then
-                let neighborhood = List<(int*int)>()
-                let neighborsToCheck = List<(int*int)>()
-                neighborsToCheck.Add((i, j))
+                let neighborhood = List<Point>()
+                let neighborsToCheck = Stack<Point>()
+                neighborsToCheck.Push(Point(j, i))
                 data'.[i, j] <- 0uy
 
                 while neighborsToCheck.Count > 0 do
-                    let (ci, cj) = pop neighborsToCheck
-                    neighborhood.Add((ci, cj))
+                    let n = neighborsToCheck.Pop()
+                    neighborhood.Add(n)
                     for (ni, nj) in neighbors do
-                        let pi = ci + ni
-                        let pj = cj + nj
+                        let pi = n.Y + ni
+                        let pj = n.X + nj
                         if pi >= 0 && pi < h && pj >= 0 && pj < w && data'.[pi, pj] = 1uy
                         then
-                            neighborsToCheck.Add((pi, pj))
+                            neighborsToCheck.Push(Point(pj, pi))
                             data'.[pi, pj] <- 0uy
                 if neighborhood.Count <= areaSize
                 then
-                    for (ni, nj) in neighborhood do
-                        data.[ni, nj] <- 0uy
+                    for n in neighborhood do
+                        data.[n.Y, n.X] <- 0uy
 
 let connectedComponents (img: Image<Gray, byte>) (startPoints: List<Point>) : List<Point> =
     let w = img.Width
     let h = img.Height
 
-    let pointChecked = HashSet<Point>()
-    let pointToCheck = List<Point>(startPoints);
+    let pointChecked = Points()
+    let pointToCheck = Stack<Point>(startPoints);
 
     let data = img.Data
 
     while pointToCheck.Count > 0 do
-        let next = pop pointToCheck
+        let next = pointToCheck.Pop()
         pointChecked.Add(next) |> ignore
         for ny in -1 .. 1 do
             for nx in -1 .. 1 do
@@ -142,55 +780,44 @@ let connectedComponents (img: Image<Gray, byte>) (startPoints: List<Point>) : Li
                     let p = Point(next.X + nx, next.Y + ny)
                     if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h && data.[p.Y, p.X, 0] > 0uy && not (pointChecked.Contains p)
                     then
-                        pointToCheck.Add(p)
+                        pointToCheck.Push(p)
 
     List<Point>(pointChecked)
 
 
-let saveImg (img: Image<'TColor, 'TDepth>) (filepath: string) =
-    img.Save(filepath)
-
+let drawLine (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: int) (y0: int) (x1: int) (y1: int) (thickness: int) =
+    img.Draw(LineSegment2D(Point(x0, y0), Point(x1, y1)), color, thickness);
 
-let saveMat (mat: Matrix<'TDepth>) (filepath: string) =
-    use img = new Image<Gray, 'TDeph>(mat.Size)
-    mat.CopyTo(img)
-    saveImg img filepath
 
-let drawLine (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: int) (y0: int) (x1: int) (y1: int) =
-    img.Draw(LineSegment2D(Point(x0, y0), Point(x1, y1)), color, 1);
+let drawLineF (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: float) (y0: float) (x1: float) (y1: float) (thickness: int) =
+    img.Draw(LineSegment2DF(PointF(float32 x0, float32 y0), PointF(float32 x1, float32 y1)), color, thickness, CvEnum.LineType.AntiAlias);
 
-let drawLineF (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: float) (y0: float) (x1: float) (y1: float) =
-    let x0, y0, x1, y1 = roundInt(x0), roundInt(y0), roundInt(x1), roundInt(y1)
-    drawLine img color x0 y0 x1 y1
 
-let drawEllipse (img: Image<'TColor, 'TDepth>) (e: Types.Ellipse) (color: 'TColor) =
-    let cosAlpha = cos e.Alpha
-    let sinAlpha = sin e.Alpha
+let drawEllipse (img: Image<'TColor, 'TDepth>) (e: Types.Ellipse) (color: 'TColor) (alpha: float) =
 
-    let mutable x0 = 0.0
-    let mutable y0 = 0.0
-    let mutable first_iteration = true
+    if alpha >= 1.0
+    then
+        img.Draw(Ellipse(PointF(float32 e.Cx, float32 e.Cy), SizeF(2. * e.B |> float32, 2. * e.A |> float32), float32 <| e.Alpha / Math.PI * 180.), color, 1, CvEnum.LineType.AntiAlias)
+    else
+        let windowPosX = e.Cx - e.A - 5.0
+        let gapX = windowPosX - (float (int windowPosX))
 
-    let n = 40
-    let thetaIncrement = 2.0 * Math.PI / (float n)
+        let windowPosY = e.Cy - e.A - 5.0
+        let gapY = windowPosY - (float (int windowPosY))
 
-    for theta in 0.0 .. thetaIncrement .. 2.0 * Math.PI do
-        let cosTheta = cos theta
-        let sinTheta = sin theta
-        let x = e.Cx + cosAlpha * e.A * cosTheta - sinAlpha * e.B * sinTheta
-        let y = e.Cy + sinAlpha * e.A * cosTheta + cosAlpha * e.B * sinTheta
+        let roi = Rectangle(int windowPosX, int windowPosY, 2. * (e.A + 5.0) |> int, 2.* (e.A + 5.0) |> int)
 
-        if not first_iteration
+        img.ROI <- roi
+        if roi = img.ROI // We do not display ellipses touching the edges (FIXME)
         then
-            drawLineF img color x0 y0 x y
-        else
-            first_iteration <- false
+            use i = new Image<'TColor, 'TDepth>(img.ROI.Size)
+            i.Draw(Ellipse(PointF(float32 <| (e.A + 5. + gapX) , float32 <| (e.A + 5. + gapY)), SizeF(2. * e.B |> float32, 2. * e.A |> float32), float32 <| e.Alpha / Math.PI * 180.), color, 1, CvEnum.LineType.AntiAlias)
+            CvInvoke.AddWeighted(img, 1.0, i, alpha, 0.0, img)
+        img.ROI <- Rectangle.Empty
 
-        x0 <- x
-        y0 <- y
 
-let drawEllipses (img: Image<'TColor, 'TDepth>) (ellipses: Types.Ellipse list) (color: 'TColor) =
-    List.iter (fun e -> drawEllipse img e color) ellipses
+let drawEllipses (img: Image<'TColor, 'TDepth>) (ellipses: Types.Ellipse list) (color: 'TColor) (alpha: float) =
+    List.iter (fun e -> drawEllipse img e color alpha) ellipses
 
 
 let rngCell =  System.Random()
@@ -213,13 +840,18 @@ let drawCell (img: Image<Bgr, byte>) (drawCellContent: bool) (c: Types.Cell) =
                     img.Data.[y + dy, x + dx, 1] <- if g + colorG > 255 then 255uy else byte (g + colorG)
                     img.Data.[y + dy, x + dx, 2] <- if r + colorR > 255 then 255uy else byte (r + colorR)
 
-    let crossColor = match c.cellClass with
-                     | Types.HealthyRBC -> Bgr(255.0, 0.0, 0.0)
-                     | Types.InfectedRBC -> Bgr(0.0, 0.0, 255.0)
-                     | Types.Peculiar -> Bgr(0.0, 0.0, 0.0)
+    let crossColor, crossColor2 =
+        match c.cellClass with
+        | Types.HealthyRBC -> Bgr(255., 0., 0.), Bgr(255., 255., 255.)
+        | Types.InfectedRBC -> Bgr(0., 0., 255.), Bgr(120., 120., 255.)
+        | Types.Peculiar -> Bgr(0., 0., 0.), Bgr(80., 80., 80.)
+
+    drawLine img crossColor2 (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 2
+    drawLine img crossColor2 c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 2
+
+    drawLine img crossColor (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 1
+    drawLine img crossColor c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 1
 
-    drawLine img crossColor (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y
-    drawLine img crossColor c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3)
 
 let drawCells (img: Image<Bgr, byte>) (drawCellContent: bool) (cells: Types.Cell list) =
     List.iter (fun c -> drawCell img drawCellContent c) cells
\ No newline at end of file