Add some tests.
[crypto_lab2.git] / rapport / main.tex
1 \documentclass[a4paper,10pt]{article}
2
3 \usepackage[francais]{babel}
4 \usepackage[utf8]{inputenc}
5 \usepackage[T1]{fontenc}
6 \usepackage{lmodern}
7
8 \usepackage{graphicx}
9 \usepackage{listings}
10 \usepackage{url}
11 \usepackage{upquote}
12 \usepackage{color}
13
14 %%% URLs %%%
15 \urldef{\dotnetcrypto}\url{http://msdn.microsoft.com/en-us/library/System.Security.Cryptography%28v=vs.110%29.aspx}
16 \urldef{\monodevelop}\url{http://www.monodevelop.com/}
17 \urldef{\rsacryptoserviceprovider}\url{http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider%28v=vs.110%29.aspx}
18
19 \title{ICR - Labo \#2 : \textit{Conception et implémentation d'un container sécurisé pour des données médicales}}
20 \author{G.Burri}
21
22 \lstdefinelanguage{FSharp}%
23 {morekeywords={let, new, match, with, rec, open, module, namespace, type, of, member, %
24 and, for, while, true, false, in, do, begin, end, fun, function, return, yield, try, %
25 mutable, if, then, else, cloud, async, static, use, abstract, interface, inherit, finally },
26 otherkeywords={ let!, return!, do!, yield!, use!, var, from, select, where, order, by },
27 keywordstyle=\color{blue}\bfseries,
28 sensitive=true,
29 basicstyle=\ttfamily,
30 breaklines=true,
31 xleftmargin=\parindent,
32 aboveskip=\bigskipamount,
33 tabsize=4,
34 morecomment=[l][\color{greencomments}]{///},
35 morecomment=[l][\color{greencomments}]{//},
36 morecomment=[s][\color{greencomments}]{{(*}{*)}},
37 morestring=[b]",
38 showstringspaces=false,
39 literate={`}{\`}1,
40 stringstyle=\color{redstrings},
41 }
42
43 \begin{document}
44
45 \nocite{*}
46
47 \maketitle
48
49
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 \section{Introduction}
52
53 Le but de ce laboratoire est de définir les algorithmes cryptographique et leurs paramètres afin de sécuriser des données médicales. Une donnée médicale est représentée par un fichier qui devra être sécurisé au sein d'un container dont le format sera définit par nos soins. Une implémentation sera ensuite proposée.
54
55
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 \section{Niveaux de sécurité}
58
59 \subsection{Quel est le niveau de sécurité que l'on souhaite atteindre ?}
60
61 \begin{itemize}
62 \item Confidentialité : les données chiffrées ne doivent pas pouvoir être décryptées par un attaquant.
63 \item Authenticité : un attaquant ne doit pas pouvoir forger un container, une signature est réalisée à l'aide d'une paire de clef \emph{RSA} publique-privée.
64 \item Intégrité : il ne faut pas que les données chiffrées aient pu être altérées par un attaquant.
65 \end{itemize}
66
67
68 \subsection{Comment s'assure-t-on que les données sont stockées de manière confidentielle ? En particulier ce qui concerne les méta-données}
69
70 Les méta-données ainsi que les données sont chiffrées ensemble. Voir le format du container décrit ci après.
71
72
73 \subsection{Comment s'assure-t-on que les données stockées sont authentiques ? Quels sont les risques à prendre en compte ?}
74
75 L'empreinte des données est signée à l'aide d'une clef privée donnée en paramètre de l'\emph{API}, ceci représente la signature qui est placée dans le container. Lors du déchiffrement, la clef publique correspondante est fournie puis utilisée pour déchiffrer l'empreinte qui est comparée à l'empreinte des données.
76
77
78 \subsection{Comment s'assure-t-on que les données stockées sont intègres ?}
79
80 Cela est réalisé avec un \emph{MAC}, dans notre cas nous utilisons \emph{HMAC-SHA256} sur l'ensemble des données chiffrées (\emph{Encrypt-then-MAC}).
81
82
83 \subsection{Quels sont les clefs cryptographiques requises qu'il est nécessaire de gérer ?}
84
85 \subsubsection{Clefs externes}
86
87 Concerne les clefs externes à l'\emph{API}.
88
89 \begin{itemize}
90 \item Une paire de clefs \emph{RSA-2048} pour la signature.
91 \item Une paire de clefs \emph{RSA-2048} pour le chiffrement des clefs \emph{AES}.
92 \end{itemize}
93
94
95 \subsubsection{Clefs internes}
96
97 Concerne les clefs gérées à l'intérieur du container.
98
99 \begin{itemize}
100 \item Une clef de 256 bits pour \emph{AES}.
101 \item Une clef de 256 bits pour \emph{HMAC}.
102 \end{itemize}
103
104 Ces clefs sont générées aléatoirement à chaque création d'un container.
105
106
107 \section{Choix des algorithmes et des paramètres}
108
109 \begin{itemize}
110 \item \emph{RSA-2048} pour la signature ainsi que pour le chiffrage des clefs \emph{AES} et \emph{HMAC}. Le bourrage \emph{PKCS\#1 v1.5} est utilisé ;
111 \item \emph{HMAC-SHA256} pour la vérification de l'intégrité ;
112 \item \emph{AES-CBC256} pour le chiffrement symétrique du contenu du fichier et des méta-données associées. Le bourrage \emph{PKCS7} est utilisé.
113 \end{itemize}
114
115
116 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
117 \section{format du container}
118
119 Le format est définit comme suit en \emph{EBNF}. Les valeurs entre crochets correspondent soit à une taille en bits soit à un type.
120
121 \begin{lstlisting}[frame=single, breaklines, basicstyle=\ttfamily\footnotesize]
122 container = header, ciphertext ;
123 header = mac[256], signature[2048], keys[2048] ;
124 ciphertext = AES(plaintext) ;
125 plaintext = meta-data, file-content ;
126 meta-data = meta-data-size[int32], { key-value-pair } ;
127 key-value-pair = key[string], value[string] ;
128 string = size[vint], content-utf8 ;
129 \end{lstlisting}
130
131 \texttt{meta-data-size} permet de connaître la taille des méta-données afin de les déchiffrer au préalable du contenu du fichier.
132
133 \texttt{keys} correspond aux clefs $k_c$ et $k_a$ ainsi qu'a l'\emph{IV} le tout chiffré avec \emph{RSA-2048}. La taille des données chiffrées est égale à $k_c + k_a + iv = 256 + 256 + 128 = 640\,bits$.
134
135 Les méta-données (\texttt{meta-data}) peuvent contenir, par exemple, le nom du fichier, sa date de création, ses droits, ou tout autres données associées.
136
137 Le type \texttt{vint} correspond à un entier de taille variable, initialement occupant un octets.
138
139
140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
141 \section{processus}
142
143 \subsection{chiffrement}
144
145 Entrées :
146
147 \begin{itemize}
148 \item $f$ : fichier
149 \item $k_{pub}$ : clef publique RSA
150 \item $k_{signpriv}$ : clef privé de signature RSA
151 \end{itemize}
152
153
154 Processus :
155
156 \begin{enumerate}
157 \item Génération d'une clef 256 bits pour \emph{AES} $\rightarrow k_c$.
158 \item Génération d'une clef 256 bits pour \emph{MAC} $\rightarrow k_a$.
159 \item Génération d'un \emph{IV} 128 bits pour le mode \emph{CBC} $\rightarrow iv$.
160 \item Construction du $plaintext$, voir format ci dessus.
161 \item Chiffrement du $plaintext$ avec \emph{AES-CBC256}, $k_c$ et $iv \rightarrow ciphertext$.
162 \item Calcul de MAC de $ciphertext$ $\rightarrow mac$.
163 \item Signature de $mac$ avec $k_{signpriv}$ $\rightarrow sig$.
164 \item Chiffrement de $k_c + k_a + iv$ avec $k_pub \rightarrow keys$.
165 \item Renvoie $mac + sig + keys + ciphertext$.
166 \end{enumerate}
167
168 Où $+$ dénote la concaténation.
169
170
171 \subsection{déchiffrement}
172
173 Entrée :
174
175 \begin{itemize}
176 \item $c$ : container chiffrées
177 \item $k_{priv}$ : clef privée RSA
178 \item $k_{signpub}$ : la clef publique de signature RSA
179 \end{itemize}
180
181 Processus :
182
183 \begin{enumerate}
184 \item Lecture de $mac$, calcul de $mac'$ sur $c$ comparaison des deux afin de vérifier l'intégrité.
185 \item Vérification de la signature avec $k_{signpub}$.
186 \item Déchiffrement de $k_c + k_a + iv$ avec $k_{priv}$.
187 \item Déchiffrement du reste des données ($ciphertext$).
188 \end{enumerate}
189
190 Ce processus nécessite deux cycles de lecture des données, le premier pour le calcul de $mac'$ et le deuxième pour le déchiffrement. Le deuxième cycle n'est effectué que si l'intégrité et l'authenticité ont été validés.
191
192
193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
194 \section{Implémentation}
195
196 Nous utilisons ici la plate-forme \emph{.NET} ainsi que le langage \emph{F\#}. L'ensemble des éléments cryptographiques requis sont fournit par \emph{.NET}\footnote{\dotnetcrypto}.
197
198 Deux \emph{assemblies} sont crées :
199
200 \begin{itemize}
201 \item \emph{CryptoFile} : \emph{Library} mettant à disposition l'\emph{API} de chiffrement de fichier et de déchiffrement de container.
202 \item \emph{CryptoFileTests} : Exécutable utilisant la \emph{library} \emph{CryptoFile} et permettant d'utiliser l'\emph{API} à l'aide d'arguments fournis par la ligne de commande.
203 \end{itemize}
204
205 \subsection{Utilisation}
206
207 Il est possible de compiler la solution à l'aide de \emph{MonoDevelop}\footnote{\monodevelop}. Le script \emph{Bash} \texttt{labo2-fsharp/run\_tests.sh} permet de compiler la solution puis d'exécuter un certain nombre de tests.
208
209 À partir du dossier \texttt{labo2-fsharp} et après avoir compiler en \emph{release} la solution, voici ce qu'il est possible d'effectuer :
210
211 \begin{itemize}
212 \item \texttt{CryptoFileTests/bin/Release/CryptoFileTests.exe tests} : Réalise une série de tests.
213 \item \texttt{CryptoFileTests/bin/Release/CryptoFileTests.exe encrypt <file> <container>} : Chiffre le fichier \texttt{<file>} ver le container \texttt{<container>}.
214 \item \texttt{CryptoFileTests/bin/Release/CryptoFileTests.exe decrypt <container> <output directory>} : Déchiffre le container \texttt{<container>} dans le dossier \texttt{<output directory>}.
215 \end{itemize}
216
217 Les clefs publiques et privées pour le chiffrement ainsi que pour la réalisation de la signature se trouvent dans les fichiers \texttt{keys-crypt.priv}, \texttt{keys-crypt.pub}, \texttt{keys-sign.priv} et \texttt{keys-sign.pub}. Ceux-ci sont automatiquement générés dans le cas où ils sont introuvables.
218
219
220 \subsection{Organisation du code}
221
222 La \emph{ĺibrary} \emph{CryptoFile} est composé de trois fichiers :
223
224 \begin{itemize}
225 \item \emph{Types.fs} : Quelques types publics.
226 \item \emph{Crypto.fs} : Contient toutes les primitives cryptographique nécessaire.
227 \item \emph{UnitTests.fs} : Contient quelques tests unitaires du module \emph{Crypto}.
228 \item \emph{API.fs} : Contient l'interface publique de la \emph{library}. Elle est détaillée ci après.
229 \end{itemize}
230
231 \subsubsection{API}
232
233 \begin{lstlisting}[language=FSharp, frame=single, basicstyle=\ttfamily\footnotesize]
234 module API =
235 let generatKeysPair : Key * Key
236
237 let encryptFile (inputFilePath : string)
238 (outputFilePath : string)
239 (signaturePrivKey: Key)
240 (cryptPubKey : Key)
241
242 let decryptFile (sourceFilePath : string)
243 (targetDirPath : string)
244 (signaturePubKey: Key)
245 (decryptPrivKey : Key)
246 \end{lstlisting}
247
248
249
250 17 Mo de mémoire et 19 s pour chiffrer un fichier de 404 Mo
251
252
253
254 \section{Analyse de la sécurité de l'implémentation}
255
256 \subsection{Quelles sont les parties critiques du code et comment s'assure-t-on que ces parties soit correctement implémentées ?}
257
258 La génération des clefs \emph{AES} doit être faite avec un générateur cryptographique. Dans notre cas nous utilisons \emph{System.Security.Cryptography.RSACryptoServiceProvider}\footnote{\rsacryptoserviceprovider}.
259
260 La mémoire correspondant aux clefs générées devrait être effacé, dans notre cas si un attaquant a accès à la mémoire de notre programme alors il a accès au contenu des fichiers à chiffrer, il n'y a donc pas de précautions prise en particulier à ce sujet.
261
262
263 \subsection{Quels sont les points-faibles restants et quelles sont les possibilités de les corriger ?}
264
265 Les deux clefs privées \emph{RSA} doivent absolument rester secrètes, pour ce faire il faudrait chiffrer les fichiers contenant ces clefs à l'aide d'une \emph{passphrase} robuste et garder celle-ci en sécurité.
266
267
268 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
269 \section{Conclusion}
270
271 % http://stephenhaunts.com/2013/03/04/cryptography-in-net-advanced-encryption-standard-aes/
272 % http://stephenhaunts.com/2013/03/26/cryptography-in-net-rsa/
273 % http://en.wikipedia.org/wiki/Digital_signature
274 %\bibliographystyle{plain}
275 %\bibliography{main}
276
277 \end{document}