then
parasiteArea <- parasiteArea + 1
-
let cellClass =
if float darkStainPixels > config.Parameters.maxDarkStainRatio * (float nbElement)
then
elif nucleusPixels.Count > 0 && parasiteArea >= minimumParasiteArea
then
- let infectionToRemove = ImgTools.connectedComponents parasites.parasite nucleusPixels
+ let infectionToRemove = Morpho.connectedComponents parasites.parasite nucleusPixels
for p in infectionToRemove do
nucleusData.[p.Y, p.X, 0] <- 0uy
InfectedRBC
-module ParasitemiaCore.EEOver
+// Translation from https://github.com/chraibi/EEOver.
+module ParasitemiaCore.EEOver
open System
quad ()
-// Return a tuple (area, x intersections, y intersections)
+/// <summary>
+/// Return a tuple (area, x intersections, y intersections).
+/// </summary>
let EEOverlapArea (e1: Types.Ellipse) (e2: Types.Ellipse) : (float32 * float32[] * float32[]) option =
let h1, k1, a1, b1, phi_1 = float e1.Cx, float e1.Cy, float e1.A, float e1.B, float e1.Alpha
let h2, k2, a2, b2, phi_2 = float e2.Cx, float e2.Cy, float e2.A, float e2.B, float e2.Alpha
open MatchingEllipses
open Const
-type private SearchExtremum = Minimum | Maximum
-
-let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) =
- let gr = 1. / 1.6180339887498948482
- let mutable a = xmin
- let mutable b = xmax
- let mutable c = b - gr * (b - a)
- let mutable d = a + gr * (b - a)
-
- for i in 1 .. nbIter do
- let mutable fc = f c
- let mutable fd = f d
-
- if searchExtremum = Maximum
- then
- let tmp = fc
- fc <- fd
- fd <- tmp
-
- if fc < fd
- then
- b <- d
- d <- c
- c <- b - gr * (b - a)
- else
- a <- c
- c <- d
- d <- a + gr * (b - a)
-
- let x = (b + a) / 2.
- x, f x
-
-// Ellipse.A is always equal or greater than Ellipse.B.
-// Ellipse.Alpha is between 0 and Pi.
+/// <summary>
+/// Try to build an ellipse from three points and two tangents passing by the first and the second point.
+/// 'Ellipse.A' is always equal or greater than Ellipse.B.
+/// 'Ellipse.Alpha' is between 0 and Pi.
+/// </summary>
let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option =
- let accuracy_extremum_search_1 = 10 // 3
- let accuracy_extremum_search_2 = 10 // 4
-
- // p3 as the referencial.
- let p1x = p1x - p3x
- let p1y = p1y - p3y
-
- let p2x = p2x - p3x
- let p2y = p2y - p3y
-
- // Convert to polar coordinates.
- let alpha1 = atan m1
- let alpha2 = atan m2
-
- let r1 = sqrt (p1x ** 2. + p1y ** 2.)
- let theta1 = atan2 p1y p1x
-
- let r2 = sqrt (p2x ** 2. + p2y ** 2.)
- let theta2 = atan2 p2y p2x
-
- let valid =
- 4. * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) *
- sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) +
- r1 * r2 * sin (alpha1 - alpha2) ** 2. * sin (theta1 - theta2) ** 2. < 0.
-
- if valid
- then
- let r theta =
- (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) /
- (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.)
-
- let rabs = r >> abs
-
- // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval.
- let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0. Math.PI Maximum
- let rTan = r thetaTan
-
- let PTanx = rTan * cos thetaTan
- let PTany = rTan * sin thetaTan
-
- let d1a = tan alpha1
- let d1b = -d1a * p1x + p1y
-
- let d2a = tan alpha2
- let d2b = -d2a * p2x + p2y
-
- let d3a = -1. / tan thetaTan
- let d3b = -d3a * PTanx + PTany
-
- let Ux = -(d1b - d2b) / (d1a - d2a)
- let Uy = -(d2a * d1b - d1a * d2b) / (d1a - d2a)
-
- let Vx = -(d1b - d3b) / (d1a - d3a)
- let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a)
-
- let Wx = p1x + (p2x - p1x) / 2.
- let Wy = p1y + (p2y - p1y) / 2.
-
- let Zx = p1x + (PTanx - p1x) / 2.
- let Zy = p1y + (PTany - p1y) / 2.
-
- let va = -(-Vy + Zy) / (Vx - Zx)
- let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx)
-
- let ua = -(-Uy + Wy) / (Ux - Wx)
- let ub = -(Wx * Uy - Ux * Wy) / (Ux - Wx)
-
- let cx = -(vb - ub) / (va - ua)
- let cy = -(ua * vb - va * ub) / (va - ua)
-
- let rc = sqrt (cx ** 2. + cy ** 2.)
- let psi = atan2 cy cx
-
- let rellipse theta =
- sqrt (
- rc ** 2. + (r1 ** 2. * r2 ** 2. * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2. * sin (theta1 - theta2) ** 2.) /
- (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) ** 2. -
- (2. * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) /
- (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.))
-
- // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval.
- let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Maximum // Pi/2 and not pi because the period is Pi.
- let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Minimum
-
- let rr1e = r r1eTheta
- let r1ex = rr1e * cos r1eTheta
- let r1ey = rr1e * sin r1eTheta
- let mutable alpha = atan ((r1ey - cy) / (r1ex - cx))
- if alpha < 0.
- then
- alpha <- alpha + Math.PI
-
- // Ride off the p3 referential.
- let cx = cx + p3x
- let cy = cy + p3y
-
- Some (Types.Ellipse(float32 cx, float32 cy, float32 r1e, float32 r2e, float32 alpha))
- else
- None
-
-let ellipse2 (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option =
let p0 = pointFromTwoLines (Types.Line(float32 m1, float32 (p1y - m1 * p1x))) (Types.Line(float32 m2, float32(p2y - m2 * p2x)))
let p0x, p0y = float p0.X, float p0.Y
else
Some (m1, m2)
-
let find (edges: Matrix<byte>)
(xGradient: Matrix<float32>)
(yGradient: Matrix<float32>)
then
match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X] -yDirData.[p1.Y, p1.X] -xDirData.[p2.Y, p2.X] -yDirData.[p2.Y, p2.X] with
| Some (m1, m2) ->
- match ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with
+ match ellipse p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with
| Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f &&
e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance ->
ellipses.Add e
let mutable maxDiff = 0.f
let mutable max_r = r1
- ImgTools.areaCloseFWithFun imgCopy [ for r in r1 .. r2 -> Math.PI * float r ** 2. |> roundInt, r ] (fun r diff ->
+ Morpho.areaCloseFWithFun imgCopy [ for r in r1 .. r2 -> Math.PI * float r ** 2. |> roundInt, r ] (fun r diff ->
if r <> r1 && diff > maxDiff
then
maxDiff <- diff
+++ /dev/null
-module ParasitemiaCore.ImgTools
-
-open System
-open System.Drawing
-open System.Collections.Generic
-open System.Linq
-
-open Emgu.CV
-open Emgu.CV.Structure
-
-open Heap
-open Const
-open Types
-open Utils
-
-let normalize (img: Image<Gray, float32>) (upperLimit: float) : Image<Gray, float32> =
- let min = ref [| 0.0 |]
- let minLocation = ref <| [| Point() |]
- let max = ref [| 0.0 |]
- let maxLocation = ref <| [| Point() |]
- img.MinMax(min, max, minLocation, maxLocation)
- let normalized = (img - (!min).[0]) / ((!max).[0] - (!min).[0])
- if upperLimit = 1.0
- then normalized
- else upperLimit * normalized
-
-let mergeChannels (img: Image<Bgr, float32>) (rgbWeights: float * float * float) : Image<Gray, float32> =
- match rgbWeights with
- | 1., 0., 0. -> img.[2]
- | 0., 1., 0. -> img.[1]
- | 0., 0., 1. -> img.[0]
- | redFactor, greenFactor, blueFactor ->
- let result = new Image<Gray, float32>(img.Size)
- CvInvoke.AddWeighted(result, 1., img.[2], redFactor, 0., result)
- CvInvoke.AddWeighted(result, 1., img.[1], greenFactor, 0., result)
- CvInvoke.AddWeighted(result, 1., img.[0], blueFactor, 0., result)
- result
-
-let mergeChannelsWithProjection (img: Image<Bgr, float32>) (v1r: float32, v1g: float32, v1b: float32) (v2r: float32, v2g: float32, v2b: float32) (upperLimit: float) : Image<Gray, float32> =
- let vr, vg, vb = v2r - v1r, v2g - v1g, v2b - v1b
- let vMagnitude = sqrt (vr ** 2.f + vg ** 2.f + vb ** 2.f)
- let project (r: float32) (g: float32) (b: float32) = ((r - v1r) * vr + (g - v1g) * vg + (b - v1b) * vb) / vMagnitude
- let result = new Image<Gray, float32>(img.Size)
- // TODO: Essayer en bindant Data pour gagner du temps
- for i in 0 .. img.Height - 1 do
- for j in 0 .. img.Width - 1 do
- result.Data.[i, j, 0] <- project img.Data.[i, j, 2] img.Data.[i, j, 1] img.Data.[i, j, 0]
- normalize result upperLimit
-
-// Normalize image values between 0uy and 255uy.
-let normalizeAndConvert (img: Image<Gray, 'TDepth>) : Image<Gray, byte> =
- (normalize (img.Convert<Gray, float32>()) 255.).Convert<Gray, byte>()
-
-let saveImg (img: Image<'TColor, 'TDepth>) (filepath: string) =
- img.Save(filepath)
-
-let saveMat (mat: Matrix<'TDepth>) (filepath: string) =
- use img = new Image<Gray, 'TDeph>(mat.Size)
- mat.CopyTo(img)
- saveImg img filepath
-
-type Histogram = { data: int[]; total: int; sum: int; min: float32; max: float32 }
-
-let histogramImg (img: Image<Gray, float32>) (nbSamples: int) : Histogram =
- let imgData = img.Data
-
- let min, max =
- let min = ref [| 0.0 |]
- let minLocation = ref <| [| Point() |]
- let max = ref [| 0.0 |]
- let maxLocation = ref <| [| Point() |]
- img.MinMax(min, max, minLocation, maxLocation)
- float32 (!min).[0], float32 (!max).[0]
-
- let inline bin (x: float32) : int =
- let p = int ((x - min) / (max - min) * float32 nbSamples)
- if p >= nbSamples then nbSamples - 1 else p
-
- let data = Array.zeroCreate nbSamples
-
- for i in 0 .. img.Height - 1 do
- for j in 0 .. img.Width - 1 do
- let p = bin imgData.[i, j, 0]
- data.[p] <- data.[p] + 1
-
- { data = data; total = img.Height * img.Width; sum = Array.sum data; min = min; max = max }
-
-let histogramMat (mat: Matrix<float32>) (nbSamples: int) : Histogram =
- let matData = mat.Data
-
- let min, max =
- let min = ref 0.0
- let minLocation = ref <| Point()
- let max = ref 0.0
- let maxLocation = ref <| Point()
- mat.MinMax(min, max, minLocation, maxLocation)
- float32 !min, float32 !max
-
- let inline bin (x: float32) : int =
- let p = int ((x - min) / (max - min) * float32 nbSamples)
- if p >= nbSamples then nbSamples - 1 else p
-
- let data = Array.zeroCreate nbSamples
-
- for i in 0 .. mat.Height - 1 do
- for j in 0 .. mat.Width - 1 do
- let p = bin matData.[i, j]
- data.[p] <- data.[p] + 1
-
- { data = data; total = mat.Height * mat.Width; sum = Array.sum data; min = min; max = max }
-
-let histogram (values: float32 seq) (nbSamples: int) : Histogram =
- let mutable min = Single.MaxValue
- let mutable max = Single.MinValue
- let mutable n = 0
-
- for v in values do
- n <- n + 1
- if v < min then min <- v
- if v > max then max <- v
-
- let inline bin (x: float32) : int =
- let p = int ((x - min) / (max - min) * float32 nbSamples)
- if p >= nbSamples then nbSamples - 1 else p
-
- let data = Array.zeroCreate nbSamples
-
- for v in values do
- let p = bin v
- data.[p] <- data.[p] + 1
-
- { data = data; total = n; sum = Array.sum data; min = min; max = max }
-
-let otsu (hist: Histogram) : float32 * float32 * float32 =
- let mutable sumB = 0
- let mutable wB = 0
- let mutable maximum = 0.0
- let mutable level = 0
- let sum = hist.data |> Array.mapi (fun i v -> i * v |> float) |> Array.sum
-
- for i in 0 .. hist.data.Length - 1 do
- wB <- wB + hist.data.[i]
- if wB <> 0
- then
- let wF = hist.total - wB
- if wF <> 0
- then
- sumB <- sumB + i * hist.data.[i]
- let mB = (float sumB) / (float wB)
- let mF = (sum - float sumB) / (float wF)
- let between = (float wB) * (float wF) * (mB - mF) ** 2.;
- if between >= maximum
- then
- level <- i
- maximum <- between
-
- let mean1 =
- let mutable sum = 0
- let mutable nb = 0
- for i in 0 .. level - 1 do
- sum <- sum + i * hist.data.[i]
- nb <- nb + hist.data.[i]
- (sum + level * hist.data.[level] / 2) / (nb + hist.data.[level] / 2)
-
- let mean2 =
- let mutable sum = 0
- let mutable nb = 0
- for i in level + 1 .. hist.data.Length - 1 do
- sum <- sum + i * hist.data.[i]
- nb <- nb + hist.data.[i]
- (sum + level * hist.data.[level] / 2) / (nb + hist.data.[level] / 2)
-
- let toFloat l =
- float32 l / float32 hist.data.Length * (hist.max - hist.min) + hist.min
-
- toFloat level, toFloat mean1, toFloat mean2
-
-/// <summary>
-/// Remove M-adjacent pixels. It may be used after thinning.
-/// </summary>
-let suppressMAdjacency (img: Matrix<byte>) =
- let w = img.Width
- let h = img.Height
- for i in 1 .. h - 2 do
- for j in 1 .. w - 2 do
- if img.[i, j] > 0uy && img.Data.[i + 1, j] > 0uy && (img.Data.[i, j - 1] > 0uy && img.Data.[i - 1, j + 1] = 0uy || img.Data.[i, j + 1] > 0uy && img.Data.[i - 1, j - 1] = 0uy)
- then
- img.[i, j] <- 0uy
- for i in 1 .. h - 2 do
- for j in 1 .. w - 2 do
- if img.[i, j] > 0uy && img.Data.[i - 1, j] > 0uy && (img.Data.[i, j - 1] > 0uy && img.Data.[i + 1, j + 1] = 0uy || img.Data.[i, j + 1] > 0uy && img.Data.[i + 1, j - 1] = 0uy)
- then
- img.[i, j] <- 0uy
-
-/// <summary>
-/// Find edges of an image by using the Canny approach.
-/// The thresholds are automatically defined with otsu on gradient magnitudes.
-/// </summary>
-/// <param name="img"></param>
-let findEdges (img: Image<Gray, float32>) : Matrix<byte> * Matrix<float32> * Matrix<float32> =
- let w = img.Width
- let h = img.Height
-
- use sobelKernel =
- new Matrix<float32>(array2D [[ 1.0f; 0.0f; -1.0f ]
- [ 2.0f; 0.0f; -2.0f ]
- [ 1.0f; 0.0f; -1.0f ]])
-
- let xGradient = new Matrix<float32>(img.Size)
- let yGradient = new Matrix<float32>(img.Size)
- CvInvoke.Filter2D(img, xGradient, sobelKernel, Point(1, 1))
- CvInvoke.Filter2D(img, yGradient, sobelKernel.Transpose(), Point(1, 1))
-
- use magnitudes = new Matrix<float32>(xGradient.Size)
- use angles = new Matrix<float32>(xGradient.Size)
- CvInvoke.CartToPolar(xGradient, yGradient, magnitudes, angles) // Compute the magnitudes and angles.
-
- let thresholdHigh, thresholdLow =
- let sensibilityHigh = 0.1f
- let sensibilityLow = 0.0f
- let threshold, _, _ = otsu (histogramMat magnitudes 300)
- threshold + (sensibilityHigh * threshold), threshold - (sensibilityLow * threshold)
-
- // Non-maximum suppression.
- use nms = new Matrix<byte>(xGradient.Size)
-
- let nmsData = nms.Data
- let anglesData = angles.Data
- let magnitudesData = magnitudes.Data
- let xGradientData = xGradient.Data
- let yGradientData = yGradient.Data
-
- for i in 0 .. h - 1 do
- nmsData.[i, 0] <- 0uy
- nmsData.[i, w - 1] <- 0uy
-
- for j in 0 .. w - 1 do
- nmsData.[0, j] <- 0uy
- nmsData.[h - 1, j] <- 0uy
-
- for i in 1 .. h - 2 do
- for j in 1 .. w - 2 do
- let vx = xGradientData.[i, j]
- let vy = yGradientData.[i, j]
- if vx <> 0.f || vy <> 0.f
- then
- let angle = anglesData.[i, j]
-
- let vx', vy' = abs vx, abs vy
- let ratio2 = if vx' > vy' then vy' / vx' else vx' / vy'
- let ratio1 = 1.f - ratio2
-
- let mNeigbors (sign: int) : float32 =
- if angle < PI / 4.f
- then ratio1 * magnitudesData.[i, j + sign] + ratio2 * magnitudesData.[i + sign, j + sign]
- elif angle < PI / 2.f
- then ratio2 * magnitudesData.[i + sign, j + sign] + ratio1 * magnitudesData.[i + sign, j]
- elif angle < 3.f * PI / 4.f
- then ratio1 * magnitudesData.[i + sign, j] + ratio2 * magnitudesData.[i + sign, j - sign]
- elif angle < PI
- then ratio2 * magnitudesData.[i + sign, j - sign] + ratio1 * magnitudesData.[i, j - sign]
- elif angle < 5.f * PI / 4.f
- then ratio1 * magnitudesData.[i, j - sign] + ratio2 * magnitudesData.[i - sign, j - sign]
- elif angle < 3.f * PI / 2.f
- then ratio2 * magnitudesData.[i - sign, j - sign] + ratio1 * magnitudesData.[i - sign, j]
- elif angle < 7.f * PI / 4.f
- then ratio1 * magnitudesData.[i - sign, j] + ratio2 * magnitudesData.[i - sign, j + sign]
- else ratio2 * magnitudesData.[i - sign, j + sign] + ratio1 * magnitudesData.[i, j + sign]
-
- let m = magnitudesData.[i, j]
- if m >= thresholdLow && m > mNeigbors 1 && m > mNeigbors -1
- then
- nmsData.[i, j] <- 1uy
-
- // suppressMConnections nms // It's not helpful for the rest of the process (ellipse detection).
-
- let edges = new Matrix<byte>(xGradient.Size)
- let edgesData = edges.Data
-
- // Hysteresis thresholding.
- let toVisit = Stack<Point>()
- for i in 0 .. h - 1 do
- for j in 0 .. w - 1 do
- if nmsData.[i, j] = 1uy && magnitudesData.[i, j] >= thresholdHigh
- then
- nmsData.[i, j] <- 0uy
- toVisit.Push(Point(j, i))
- while toVisit.Count > 0 do
- let p = toVisit.Pop()
- edgesData.[p.Y, p.X] <- 1uy
- for i' in -1 .. 1 do
- for j' in -1 .. 1 do
- if i' <> 0 || j' <> 0
- then
- let ni = p.Y + i'
- let nj = p.X + j'
- if ni >= 0 && ni < h && nj >= 0 && nj < w && nmsData.[ni, nj] = 1uy
- then
- nmsData.[ni, nj] <- 0uy
- toVisit.Push(Point(nj, ni))
-
- edges, xGradient, yGradient
-
-let gaussianFilter (img : Image<'TColor, 'TDepth>) (standardDeviation : float) : Image<'TColor, 'TDepth> =
- let size = 2 * int (ceil (4.0 * standardDeviation)) + 1
- img.SmoothGaussian(size, size, standardDeviation, standardDeviation)
-
-let drawPoints (img: Image<Gray, 'TDepth>) (points: Points) (intensity: 'TDepth) =
- for p in points do
- img.Data.[p.Y, p.X, 0] <- intensity
-
-type ExtremumType =
- | Maxima = 1
- | Minima = 2
-
-let findExtremum (img: Image<Gray, 'TDepth>) (extremumType: ExtremumType) : IEnumerable<Points> =
- let w = img.Width
- let h = img.Height
- let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
-
- let imgData = img.Data
- let suppress: bool[,] = Array2D.zeroCreate h w
-
- let result = List<List<Point>>()
-
- let flood (start: Point) : List<List<Point>> =
- let sameLevelToCheck = Stack<Point>()
- let betterLevelToCheck = Stack<Point>()
- betterLevelToCheck.Push(start)
-
- let result' = List<List<Point>>()
-
- while betterLevelToCheck.Count > 0 do
- let p = betterLevelToCheck.Pop()
- if not suppress.[p.Y, p.X]
- then
- suppress.[p.Y, p.X] <- true
- sameLevelToCheck.Push(p)
- let current = List<Point>()
-
- let mutable betterExists = false
-
- while sameLevelToCheck.Count > 0 do
- let p' = sameLevelToCheck.Pop()
- let currentLevel = imgData.[p'.Y, p'.X, 0]
- current.Add(p') |> ignore
- for i, j in se do
- let ni = i + p'.Y
- let nj = j + p'.X
- if ni >= 0 && ni < h && nj >= 0 && nj < w
- then
- let level = imgData.[ni, nj, 0]
- let notSuppressed = not suppress.[ni, nj]
-
- if level = currentLevel && notSuppressed
- then
- suppress.[ni, nj] <- true
- sameLevelToCheck.Push(Point(nj, ni))
- elif if extremumType = ExtremumType.Maxima then level > currentLevel else level < currentLevel
- then
- betterExists <- true
- if notSuppressed
- then
- betterLevelToCheck.Push(Point(nj, ni))
-
- if not betterExists
- then
- result'.Add(current)
- result'
-
- for i in 0 .. h - 1 do
- for j in 0 .. w - 1 do
- let maxima = flood (Point(j, i))
- if maxima.Count > 0
- then
- result.AddRange(maxima)
-
- result.Select(fun l -> Points(l))
-
-let findMaxima (img: Image<Gray, 'TDepth>) : IEnumerable<Points> =
- findExtremum img ExtremumType.Maxima
-
-let findMinima (img: Image<Gray, 'TDepth>) : IEnumerable<Points> =
- findExtremum img ExtremumType.Minima
-
-type PriorityQueue () =
- let size = 256
- let q: Points[] = Array.init size (fun i -> Points())
- let mutable highest = -1 // Value of the first elements of 'q'.
- let mutable lowest = size
-
- member this.NextMax () : byte * Point =
- if this.IsEmpty
- then
- invalidOp "Queue is empty"
- else
- let l = q.[highest]
- let next = l.First()
- l.Remove(next) |> ignore
- let value = byte highest
-
- if l.Count = 0
- then
- highest <- highest - 1
- while highest > lowest && q.[highest].Count = 0 do
- highest <- highest - 1
- if highest = lowest
- then
- highest <- -1
- lowest <- size
-
- value, next
-
- member this.NextMin () : byte * Point =
- if this.IsEmpty
- then
- invalidOp "Queue is empty"
- else
- let l = q.[lowest + 1]
- let next = l.First()
- l.Remove(next) |> ignore
- let value = byte (lowest + 1)
-
- if l.Count = 0
- then
- lowest <- lowest + 1
- while lowest < highest && q.[lowest + 1].Count = 0 do
- lowest <- lowest + 1
- if highest = lowest
- then
- highest <- -1
- lowest <- size
-
- value, next
-
- member this.Max =
- highest |> byte
-
- member this.Min =
- lowest + 1 |> byte
-
- member this.Add (value: byte) (p: Point) =
- let vi = int value
-
- if vi > highest
- then
- highest <- vi
- if vi <= lowest
- then
- lowest <- vi - 1
-
- q.[vi].Add(p) |> ignore
-
- member this.Remove (value: byte) (p: Point) =
- let vi = int value
- if q.[vi].Remove(p) && q.[vi].Count = 0
- then
- if vi = highest
- then
- highest <- highest - 1
- while highest > lowest && q.[highest].Count = 0 do
- highest <- highest - 1
- elif vi - 1 = lowest
- then
- lowest <- lowest + 1
- while lowest < highest && q.[lowest + 1].Count = 0 do
- lowest <- lowest + 1
-
- if highest = lowest // The queue is now empty.
- then
- highest <- -1
- lowest <- size
-
- member this.IsEmpty =
- highest = -1
-
- member this.Clear () =
- while highest > lowest do
- q.[highest].Clear()
- highest <- highest - 1
- highest <- -1
- lowest <- size
-
-type private AreaState =
- | Removed = 1
- | Unprocessed = 2
- | Validated = 3
-
-type private AreaOperation =
- | Opening = 1
- | Closing = 2
-
-[<AllowNullLiteral>]
-type private Area (elements: Points) =
- member this.Elements = elements
- member val Intensity = None with get, set
- member val State = AreaState.Unprocessed with get, set
-
-let private areaOperation (img: Image<Gray, byte>) (area: int) (op: AreaOperation) =
- let w = img.Width
- let h = img.Height
- let imgData = img.Data
- let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
-
- let areas = List<Area>((if op = AreaOperation.Opening then findMaxima img else findMinima img) |> Seq.map Area)
-
- let pixels: Area[,] = Array2D.create h w null
- for m in areas do
- for e in m.Elements do
- pixels.[e.Y, e.X] <- m
-
- let queue = PriorityQueue()
-
- let addEdgeToQueue (elements: Points) =
- for p in elements do
- for i, j in se do
- let ni = i + p.Y
- let nj = j + p.X
- let p' = Point(nj, ni)
- if ni >= 0 && ni < h && nj >= 0 && nj < w && not (elements.Contains(p'))
- then
- queue.Add (imgData.[ni, nj, 0]) p'
-
- // Reverse order is quicker.
- for i in areas.Count - 1 .. -1 .. 0 do
- let m = areas.[i]
- if m.Elements.Count <= area && m.State <> AreaState.Removed
- then
- queue.Clear()
- addEdgeToQueue m.Elements
-
- let mutable intensity = if op = AreaOperation.Opening then queue.Max else queue.Min
- let nextElements = Points()
-
- let mutable stop = false
- while not stop do
- let intensity', p = if op = AreaOperation.Opening then queue.NextMax () else queue.NextMin ()
- let mutable merged = false
-
- if intensity' = intensity // The intensity doesn't change.
- then
- if m.Elements.Count + nextElements.Count + 1 > area
- then
- m.State <- AreaState.Validated
- m.Intensity <- Some intensity
- stop <- true
- else
- nextElements.Add(p) |> ignore
-
- elif if op = AreaOperation.Opening then intensity' < intensity else intensity' > intensity
- then
- m.Elements.UnionWith(nextElements)
- for e in nextElements do
- pixels.[e.Y, e.X] <- m
-
- if m.Elements.Count = area
- then
- m.State <- AreaState.Validated
- m.Intensity <- Some (intensity')
- stop <- true
- else
- intensity <- intensity'
- nextElements.Clear()
- nextElements.Add(p) |> ignore
-
- else
- match pixels.[p.Y, p.X] with
- | null -> ()
- | m' ->
- if m'.Elements.Count + m.Elements.Count <= area
- then
- m'.State <- AreaState.Removed
- for e in m'.Elements do
- pixels.[e.Y, e.X] <- m
- queue.Remove imgData.[e.Y, e.X, 0] e
- addEdgeToQueue m'.Elements
- m.Elements.UnionWith(m'.Elements)
- let intensityMax = if op = AreaOperation.Opening then queue.Max else queue.Min
- if intensityMax <> intensity
- then
- intensity <- intensityMax
- nextElements.Clear()
- merged <- true
-
- if not merged
- then
- m.State <- AreaState.Validated
- m.Intensity <- Some (intensity)
- stop <- true
-
- if not stop && not merged
- then
- for i, j in se do
- let ni = i + p.Y
- let nj = j + p.X
- let p' = Point(nj, ni)
- if ni < 0 || ni >= h || nj < 0 || nj >= w
- then
- m.State <- AreaState.Validated
- m.Intensity <- Some (intensity)
- stop <- true
- elif not (m.Elements.Contains(p')) && not (nextElements.Contains(p'))
- then
- queue.Add (imgData.[ni, nj, 0]) p'
-
- if queue.IsEmpty
- then
- if m.Elements.Count + nextElements.Count <= area
- then
- m.State <- AreaState.Validated
- m.Intensity <- Some intensity'
- m.Elements.UnionWith(nextElements)
- stop <- true
-
- for m in areas do
- if m.State = AreaState.Validated
- then
- match m.Intensity with
- | Some i ->
- for p in m.Elements do
- imgData.[p.Y, p.X, 0] <- i
- | _ -> ()
- ()
-
-/// <summary>
-/// Area opening on byte image.
-/// </summary>
-let areaOpen (img: Image<Gray, byte>) (area: int) =
- areaOperation img area AreaOperation.Opening
-
-/// <summary>
-/// Area closing on byte image.
-/// </summary>
-let areaClose (img: Image<Gray, byte>) (area: int) =
- areaOperation img area AreaOperation.Closing
-
-// A simpler algorithm than 'areaOpen' on byte image but slower.
-let areaOpen2 (img: Image<Gray, byte>) (area: int) =
- let w = img.Width
- let h = img.Height
- let imgData = img.Data
- let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
-
- let histogram = Array.zeroCreate 256
- for i in 0 .. h - 1 do
- for j in 0 .. w - 1 do
- let v = imgData.[i, j, 0] |> int
- histogram.[v] <- histogram.[v] + 1
-
- let flooded : bool[,] = Array2D.zeroCreate h w
-
- let pointsChecked = HashSet<Point>()
- let pointsToCheck = Stack<Point>()
-
- for level in 255 .. -1 .. 0 do
- let mutable n = histogram.[level]
- if n > 0
- then
- for i in 0 .. h - 1 do
- for j in 0 .. w - 1 do
- if not flooded.[i, j] && imgData.[i, j, 0] = byte level
- then
- let mutable maxNeighborValue = 0uy
- pointsChecked.Clear()
- pointsToCheck.Clear()
- pointsToCheck.Push(Point(j, i))
-
- while pointsToCheck.Count > 0 do
- let next = pointsToCheck.Pop()
- pointsChecked.Add(next) |> ignore
- flooded.[next.Y, next.X] <- true
-
- for nx, ny in se do
- let p = Point(next.X + nx, next.Y + ny)
- if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h
- then
- let v = imgData.[p.Y, p.X, 0]
- if v = byte level
- then
- if not (pointsChecked.Contains(p))
- then
- pointsToCheck.Push(p)
- elif v > maxNeighborValue
- then
- maxNeighborValue <- v
-
- if int maxNeighborValue < level && pointsChecked.Count <= area
- then
- for p in pointsChecked do
- imgData.[p.Y, p.X, 0] <- maxNeighborValue
-
-[<AllowNullLiteral>]
-type Island (cmp: IComparer<float32>) =
- member val Shore = Heap.Heap<float32, Point>(cmp) with get
- member val Level = 0.f with get, set
- member val Surface = 0 with get, set
- member this.IsInfinite = this.Surface = Int32.MaxValue
-
-let private areaOperationF (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: ('a -> float32 -> unit) option) (op: AreaOperation) =
- let w = img.Width
- let h = img.Height
- let earth = img.Data
- let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
-
- let comparer = if op = AreaOperation.Opening
- then { new IComparer<float32> with member this.Compare(v1, v2) = v1.CompareTo(v2) }
- else { new IComparer<float32> with member this.Compare(v1, v2) = v2.CompareTo(v1) }
-
- let ownership: Island[,] = Array2D.create h w null
-
- // Initialize islands with their shore.
- let islands = List<Island>()
- let extremum = img |> if op = AreaOperation.Opening then findMaxima else findMinima
- for e in extremum do
- let island =
- let p = e.First()
- Island(comparer, Level = earth.[p.Y, p.X, 0], Surface = e.Count)
- islands.Add(island)
- let shorePoints = Points()
- for p in e do
- ownership.[p.Y, p.X] <- island
- for i, j in se do
- let ni = i + p.Y
- let nj = j + p.X
- let neighbor = Point(nj, ni)
- if ni >= 0 && ni < h && nj >= 0 && nj < w && Object.ReferenceEquals(ownership.[ni, nj], null) && not (shorePoints.Contains(neighbor))
- then
- shorePoints.Add(neighbor) |> ignore
- island.Shore.Add earth.[ni, nj, 0] neighbor
-
- for area, obj in areas do
- for island in islands do
- let mutable stop = island.Shore.IsEmpty
-
- // 'true' if 'p' is owned or adjacent to 'island'.
- let inline ownedOrAdjacent (p: Point) : bool =
- ownership.[p.Y, p.X] = island ||
- (p.Y > 0 && ownership.[p.Y - 1, p.X] = island) ||
- (p.Y < h - 1 && ownership.[p.Y + 1, p.X] = island) ||
- (p.X > 0 && ownership.[p.Y, p.X - 1] = island) ||
- (p.X < w - 1 && ownership.[p.Y, p.X + 1] = island)
-
- while not stop && island.Surface < area do
- let level, next = island.Shore.Max
- let other = ownership.[next.Y, next.X]
- if other = island // During merging, some points on the shore may be owned by the island itself -> ignored.
- then
- island.Shore.RemoveNext ()
- else
- if not <| Object.ReferenceEquals(other, null)
- then // We touching another island.
- if island.IsInfinite || other.IsInfinite || island.Surface + other.Surface >= area || comparer.Compare(island.Level, other.Level) < 0
- then
- stop <- true
- else // We can merge 'other' into 'surface'.
- island.Surface <- island.Surface + other.Surface
- island.Level <- other.Level
- // island.Level <- if comparer.Compare(island.Level, other.Level) > 0 then other.Level else island.Level
- for l, p in other.Shore do
- let mutable currentY = p.Y + 1
- while currentY < h && ownership.[currentY, p.X] = other do
- ownership.[currentY, p.X] <- island
- currentY <- currentY + 1
- island.Shore.Add l p
- other.Shore.Clear()
-
- elif comparer.Compare(level, island.Level) > 0
- then
- stop <- true
- else
- island.Shore.RemoveNext ()
- for i, j in se do
- let ni = i + next.Y
- let nj = j + next.X
- if ni < 0 || ni >= h || nj < 0 || nj >= w
- then
- island.Surface <- Int32.MaxValue
- stop <- true
- else
- let neighbor = Point(nj, ni)
- if not <| ownedOrAdjacent neighbor
- then
- island.Shore.Add earth.[ni, nj, 0] neighbor
- if not stop
- then
- ownership.[next.Y, next.X] <- island
- island.Level <- level
- island.Surface <- island.Surface + 1
-
- let mutable diff = 0.f
-
- for i in 0 .. h - 1 do
- for j in 0 .. w - 1 do
- match ownership.[i, j] with
- | null -> ()
- | island ->
- let l = island.Level
- diff <- diff + l - earth.[i, j, 0]
- earth.[i, j, 0] <- l
-
- match f with
- | Some f' -> f' obj diff
- | _ -> ()
- ()
-
-/// <summary>
-/// Area opening on float image.
-/// </summary>
-let areaOpenF (img: Image<Gray, float32>) (area: int) =
- areaOperationF img [ area, () ] None AreaOperation.Opening
-
-/// <summary>
-/// Area closing on float image.
-/// </summary>
-let areaCloseF (img: Image<Gray, float32>) (area: int) =
- areaOperationF img [ area, () ] None AreaOperation.Closing
-
-/// <summary>
-/// Area closing on float image with different areas. Given areas must be sorted increasingly.
-/// For each area the function 'f' is called with the associated area value of type 'a and the volume difference
-/// Between the previous and the current closing.
-/// </summary>
-let areaOpenFWithFun (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: 'a -> float32 -> unit) =
- areaOperationF img areas (Some f) AreaOperation.Opening
-
-/// <summary>
-/// Same as 'areaOpenFWithFun' for closing operation.
-/// </summary>
-let areaCloseFWithFun (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: 'a -> float32 -> unit) =
- areaOperationF img areas (Some f) AreaOperation.Closing
-
-/// <summary>
-/// Zhang and Suen thinning algorithm.
-/// Modify 'mat' in place.
-/// </summary>
-let thin (mat: Matrix<byte>) =
- let w = mat.Width
- let h = mat.Height
- let mutable data1 = mat.Data
- let mutable data2 = Array2D.copy data1
-
- let mutable pixelChanged = true
- let mutable oddIteration = true
-
- while pixelChanged do
- pixelChanged <- false
- for i in 0..h-1 do
- for j in 0..w-1 do
- if data1.[i, j] = 1uy
- then
- let p2 = if i = 0 then 0uy else data1.[i-1, j]
- let p3 = if i = 0 || j = w-1 then 0uy else data1.[i-1, j+1]
- let p4 = if j = w-1 then 0uy else data1.[i, j+1]
- let p5 = if i = h-1 || j = w-1 then 0uy else data1.[i+1, j+1]
- let p6 = if i = h-1 then 0uy else data1.[i+1, j]
- let p7 = if i = h-1 || j = 0 then 0uy else data1.[i+1, j-1]
- let p8 = if j = 0 then 0uy else data1.[i, j-1]
- let p9 = if i = 0 || j = 0 then 0uy else data1.[i-1, j-1]
-
- let sumNeighbors = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9
- if sumNeighbors >= 2uy && sumNeighbors <= 6uy &&
- (if p2 = 0uy && p3 = 1uy then 1 else 0) +
- (if p3 = 0uy && p4 = 1uy then 1 else 0) +
- (if p4 = 0uy && p5 = 1uy then 1 else 0) +
- (if p5 = 0uy && p6 = 1uy then 1 else 0) +
- (if p6 = 0uy && p7 = 1uy then 1 else 0) +
- (if p7 = 0uy && p8 = 1uy then 1 else 0) +
- (if p8 = 0uy && p9 = 1uy then 1 else 0) +
- (if p9 = 0uy && p2 = 1uy then 1 else 0) = 1 &&
- if oddIteration
- then p2 * p4 * p6 = 0uy && p4 * p6 * p8 = 0uy
- else p2 * p4 * p8 = 0uy && p2 * p6 * p8 = 0uy
- then
- data2.[i, j] <- 0uy
- pixelChanged <- true
- else
- data2.[i, j] <- 0uy
-
- oddIteration <- not oddIteration
- let tmp = data1
- data1 <- data2
- data2 <- tmp
-
-/// <summary>
-/// Remove all 8-connected pixels with an area equal or greater than 'areaSize'.
-/// Modify 'mat' in place.
-/// </summary>
-let removeArea (mat: Matrix<byte>) (areaSize: int) =
- let neighbors = [|
- (-1, 0) // p2
- (-1, 1) // p3
- ( 0, 1) // p4
- ( 1, 1) // p5
- ( 1, 0) // p6
- ( 1, -1) // p7
- ( 0, -1) // p8
- (-1, -1) |] // p9
-
- use mat' = new Matrix<byte>(mat.Size)
- let w = mat'.Width
- let h = mat'.Height
- mat.CopyTo(mat')
-
- let data = mat.Data
- let data' = mat'.Data
-
- for i in 0..h-1 do
- for j in 0..w-1 do
- if data'.[i, j] = 1uy
- then
- let neighborhood = List<Point>()
- let neighborsToCheck = Stack<Point>()
- neighborsToCheck.Push(Point(j, i))
- data'.[i, j] <- 0uy
-
- while neighborsToCheck.Count > 0 do
- let n = neighborsToCheck.Pop()
- neighborhood.Add(n)
- for (ni, nj) in neighbors do
- let pi = n.Y + ni
- let pj = n.X + nj
- if pi >= 0 && pi < h && pj >= 0 && pj < w && data'.[pi, pj] = 1uy
- then
- neighborsToCheck.Push(Point(pj, pi))
- data'.[pi, pj] <- 0uy
- if neighborhood.Count <= areaSize
- then
- for n in neighborhood do
- data.[n.Y, n.X] <- 0uy
-
-let connectedComponents (img: Image<Gray, byte>) (startPoints: List<Point>) : Points =
- let w = img.Width
- let h = img.Height
-
- let pointChecked = Points()
- let pointToCheck = Stack<Point>(startPoints);
-
- let data = img.Data
-
- while pointToCheck.Count > 0 do
- let next = pointToCheck.Pop()
- pointChecked.Add(next) |> ignore
- for ny in -1 .. 1 do
- for nx in -1 .. 1 do
- if ny <> 0 && nx <> 0
- then
- let p = Point(next.X + nx, next.Y + ny)
- if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h && data.[p.Y, p.X, 0] > 0uy && not (pointChecked.Contains p)
- then
- pointToCheck.Push(p)
-
- pointChecked
-
-let drawLine (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: int) (y0: int) (x1: int) (y1: int) (thickness: int) =
- img.Draw(LineSegment2D(Point(x0, y0), Point(x1, y1)), color, thickness);
-
-let drawLineF (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: float) (y0: float) (x1: float) (y1: float) (thickness: int) =
- img.Draw(LineSegment2DF(PointF(float32 x0, float32 y0), PointF(float32 x1, float32 y1)), color, thickness, CvEnum.LineType.AntiAlias);
-
-let drawEllipse (img: Image<'TColor, 'TDepth>) (e: Ellipse) (color: 'TColor) (alpha: float) =
- if alpha >= 1.0
- then
- img.Draw(Emgu.CV.Structure.Ellipse(PointF(e.Cx, e.Cy), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
- else
- let windowPosX = e.Cx - e.A - 5.f
- let gapX = windowPosX - (float32 (int windowPosX))
-
- let windowPosY = e.Cy - e.A - 5.f
- let gapY = windowPosY - (float32 (int windowPosY))
-
- let roi = Rectangle(int windowPosX, int windowPosY, 2.f * (e.A + 5.f) |> int, 2.f * (e.A + 5.f) |> int)
-
- img.ROI <- roi
- if roi = img.ROI // We do not display ellipses touching the edges (FIXME)
- then
- use i = new Image<'TColor, 'TDepth>(img.ROI.Size)
- i.Draw(Emgu.CV.Structure.Ellipse(PointF(e.A + 5.f + gapX, e.A + 5.f + gapY), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
- CvInvoke.AddWeighted(img, 1.0, i, alpha, 0.0, img)
- img.ROI <- Rectangle.Empty
-
-let drawEllipses (img: Image<'TColor, 'TDepth>) (ellipses: Ellipse list) (color: 'TColor) (alpha: float) =
- List.iter (fun e -> drawEllipse img e color alpha) ellipses
-
-let rngCell = System.Random()
-let drawCell (img: Image<Bgr, byte>) (drawCellContent: bool) (c: Cell) =
- if drawCellContent
- then
- let colorB = rngCell.Next(20, 70)
- let colorG = rngCell.Next(20, 70)
- let colorR = rngCell.Next(20, 70)
-
- for y in 0 .. c.elements.Height - 1 do
- for x in 0 .. c.elements.Width - 1 do
- if c.elements.[y, x] > 0uy
- then
- let dx, dy = c.center.X - c.elements.Width / 2, c.center.Y - c.elements.Height / 2
- let b = img.Data.[y + dy, x + dx, 0] |> int
- let g = img.Data.[y + dy, x + dx, 1] |> int
- let r = img.Data.[y + dy, x + dx, 2] |> int
- img.Data.[y + dy, x + dx, 0] <- if b + colorB > 255 then 255uy else byte (b + colorB)
- img.Data.[y + dy, x + dx, 1] <- if g + colorG > 255 then 255uy else byte (g + colorG)
- img.Data.[y + dy, x + dx, 2] <- if r + colorR > 255 then 255uy else byte (r + colorR)
-
- let crossColor, crossColor2 =
- match c.cellClass with
- | HealthyRBC -> Bgr(255., 0., 0.), Bgr(255., 255., 255.)
- | InfectedRBC -> Bgr(0., 0., 255.), Bgr(120., 120., 255.)
- | Peculiar -> Bgr(0., 0., 0.), Bgr(80., 80., 80.)
-
- drawLine img crossColor2 (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 2
- drawLine img crossColor2 c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 2
-
- drawLine img crossColor (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 1
- drawLine img crossColor c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 1
-
-
-let drawCells (img: Image<Bgr, byte>) (drawCellContent: bool) (cells: Cell list) =
- List.iter (fun c -> drawCell img drawCellContent c) cells
\ No newline at end of file
--- /dev/null
+module ParasitemiaCore.Drawing
+
+open System
+open System.Drawing
+
+open Emgu.CV
+open Emgu.CV.Structure
+
+open Const
+open Types
+
+let drawPoints (img: Image<Gray, 'TDepth>) (points: Points) (intensity: 'TDepth) =
+ for p in points do
+ img.Data.[p.Y, p.X, 0] <- intensity
+
+let drawLine (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: int) (y0: int) (x1: int) (y1: int) (thickness: int) =
+ img.Draw(LineSegment2D(Point(x0, y0), Point(x1, y1)), color, thickness);
+
+let drawLineF (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: float) (y0: float) (x1: float) (y1: float) (thickness: int) =
+ img.Draw(LineSegment2DF(PointF(float32 x0, float32 y0), PointF(float32 x1, float32 y1)), color, thickness, CvEnum.LineType.AntiAlias);
+
+let drawEllipse (img: Image<'TColor, 'TDepth>) (e: Ellipse) (color: 'TColor) (alpha: float) =
+ if alpha >= 1.0
+ then
+ img.Draw(Emgu.CV.Structure.Ellipse(PointF(e.Cx, e.Cy), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
+ else
+ let windowPosX = e.Cx - e.A - 5.f
+ let gapX = windowPosX - (float32 (int windowPosX))
+
+ let windowPosY = e.Cy - e.A - 5.f
+ let gapY = windowPosY - (float32 (int windowPosY))
+
+ let roi = Rectangle(int windowPosX, int windowPosY, 2.f * (e.A + 5.f) |> int, 2.f * (e.A + 5.f) |> int)
+
+ img.ROI <- roi
+ if roi = img.ROI // We do not display ellipses touching the edges (FIXME)
+ then
+ use i = new Image<'TColor, 'TDepth>(img.ROI.Size)
+ i.Draw(Emgu.CV.Structure.Ellipse(PointF(e.A + 5.f + gapX, e.A + 5.f + gapY), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
+ CvInvoke.AddWeighted(img, 1.0, i, alpha, 0.0, img)
+ img.ROI <- Rectangle.Empty
+
+let drawEllipses (img: Image<'TColor, 'TDepth>) (ellipses: Ellipse list) (color: 'TColor) (alpha: float) =
+ List.iter (fun e -> drawEllipse img e color alpha) ellipses
+
+let rngCell = System.Random()
+let drawCell (img: Image<Bgr, byte>) (drawCellContent: bool) (c: Cell) =
+ if drawCellContent
+ then
+ let colorB = rngCell.Next(20, 70)
+ let colorG = rngCell.Next(20, 70)
+ let colorR = rngCell.Next(20, 70)
+
+ for y in 0 .. c.elements.Height - 1 do
+ for x in 0 .. c.elements.Width - 1 do
+ if c.elements.[y, x] > 0uy
+ then
+ let dx, dy = c.center.X - c.elements.Width / 2, c.center.Y - c.elements.Height / 2
+ let b = img.Data.[y + dy, x + dx, 0] |> int
+ let g = img.Data.[y + dy, x + dx, 1] |> int
+ let r = img.Data.[y + dy, x + dx, 2] |> int
+ img.Data.[y + dy, x + dx, 0] <- if b + colorB > 255 then 255uy else byte (b + colorB)
+ img.Data.[y + dy, x + dx, 1] <- if g + colorG > 255 then 255uy else byte (g + colorG)
+ img.Data.[y + dy, x + dx, 2] <- if r + colorR > 255 then 255uy else byte (r + colorR)
+
+ let crossColor, crossColor2 =
+ match c.cellClass with
+ | HealthyRBC -> Bgr(255., 0., 0.), Bgr(255., 255., 255.)
+ | InfectedRBC -> Bgr(0., 0., 255.), Bgr(120., 120., 255.)
+ | Peculiar -> Bgr(0., 0., 0.), Bgr(80., 80., 80.)
+
+ drawLine img crossColor2 (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 2
+ drawLine img crossColor2 c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 2
+
+ drawLine img crossColor (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 1
+ drawLine img crossColor c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 1
+
+let drawCells (img: Image<Bgr, byte>) (drawCellContent: bool) (cells: Cell list) =
+ List.iter (fun c -> drawCell img drawCellContent c) cells
\ No newline at end of file
--- /dev/null
+module ParasitemiaCore.Edges
+
+open System
+open System.Drawing
+open System.Collections.Generic
+
+open Emgu.CV
+open Emgu.CV.Structure
+
+open Const
+open Histogram
+open Otsu
+
+/// <summary>
+/// Find edges of an image by using the Canny approach.
+/// The thresholds are automatically defined with otsu on gradient magnitudes.
+/// </summary>
+/// <param name="img"></param>
+let find (img: Image<Gray, float32>) : Matrix<byte> * Matrix<float32> * Matrix<float32> =
+ let w = img.Width
+ let h = img.Height
+
+ use sobelKernel =
+ new Matrix<float32>(array2D [[ 1.0f; 0.0f; -1.0f ]
+ [ 2.0f; 0.0f; -2.0f ]
+ [ 1.0f; 0.0f; -1.0f ]])
+
+ let xGradient = new Matrix<float32>(img.Size)
+ let yGradient = new Matrix<float32>(img.Size)
+ CvInvoke.Filter2D(img, xGradient, sobelKernel, Point(1, 1))
+ CvInvoke.Filter2D(img, yGradient, sobelKernel.Transpose(), Point(1, 1))
+
+ use magnitudes = new Matrix<float32>(xGradient.Size)
+ use angles = new Matrix<float32>(xGradient.Size)
+ CvInvoke.CartToPolar(xGradient, yGradient, magnitudes, angles) // Compute the magnitudes and angles.
+
+ let thresholdHigh, thresholdLow =
+ let sensibilityHigh = 0.1f
+ let sensibilityLow = 0.0f
+ let threshold, _, _ = otsu (histogramMat magnitudes 300)
+ threshold + (sensibilityHigh * threshold), threshold - (sensibilityLow * threshold)
+
+ // Non-maximum suppression.
+ use nms = new Matrix<byte>(xGradient.Size)
+
+ let nmsData = nms.Data
+ let anglesData = angles.Data
+ let magnitudesData = magnitudes.Data
+ let xGradientData = xGradient.Data
+ let yGradientData = yGradient.Data
+
+ for i in 0 .. h - 1 do
+ nmsData.[i, 0] <- 0uy
+ nmsData.[i, w - 1] <- 0uy
+
+ for j in 0 .. w - 1 do
+ nmsData.[0, j] <- 0uy
+ nmsData.[h - 1, j] <- 0uy
+
+ for i in 1 .. h - 2 do
+ for j in 1 .. w - 2 do
+ let vx = xGradientData.[i, j]
+ let vy = yGradientData.[i, j]
+ if vx <> 0.f || vy <> 0.f
+ then
+ let angle = anglesData.[i, j]
+
+ let vx', vy' = abs vx, abs vy
+ let ratio2 = if vx' > vy' then vy' / vx' else vx' / vy'
+ let ratio1 = 1.f - ratio2
+
+ let mNeigbors (sign: int) : float32 =
+ if angle < PI / 4.f
+ then ratio1 * magnitudesData.[i, j + sign] + ratio2 * magnitudesData.[i + sign, j + sign]
+ elif angle < PI / 2.f
+ then ratio2 * magnitudesData.[i + sign, j + sign] + ratio1 * magnitudesData.[i + sign, j]
+ elif angle < 3.f * PI / 4.f
+ then ratio1 * magnitudesData.[i + sign, j] + ratio2 * magnitudesData.[i + sign, j - sign]
+ elif angle < PI
+ then ratio2 * magnitudesData.[i + sign, j - sign] + ratio1 * magnitudesData.[i, j - sign]
+ elif angle < 5.f * PI / 4.f
+ then ratio1 * magnitudesData.[i, j - sign] + ratio2 * magnitudesData.[i - sign, j - sign]
+ elif angle < 3.f * PI / 2.f
+ then ratio2 * magnitudesData.[i - sign, j - sign] + ratio1 * magnitudesData.[i - sign, j]
+ elif angle < 7.f * PI / 4.f
+ then ratio1 * magnitudesData.[i - sign, j] + ratio2 * magnitudesData.[i - sign, j + sign]
+ else ratio2 * magnitudesData.[i - sign, j + sign] + ratio1 * magnitudesData.[i, j + sign]
+
+ let m = magnitudesData.[i, j]
+ if m >= thresholdLow && m > mNeigbors 1 && m > mNeigbors -1
+ then
+ nmsData.[i, j] <- 1uy
+
+ // suppressMConnections nms // It's not helpful for the rest of the process (ellipse detection).
+
+ let edges = new Matrix<byte>(xGradient.Size)
+ let edgesData = edges.Data
+
+ // Hysteresis thresholding.
+ let toVisit = Stack<Point>()
+ for i in 0 .. h - 1 do
+ for j in 0 .. w - 1 do
+ if nmsData.[i, j] = 1uy && magnitudesData.[i, j] >= thresholdHigh
+ then
+ nmsData.[i, j] <- 0uy
+ toVisit.Push(Point(j, i))
+ while toVisit.Count > 0 do
+ let p = toVisit.Pop()
+ edgesData.[p.Y, p.X] <- 1uy
+ for i' in -1 .. 1 do
+ for j' in -1 .. 1 do
+ if i' <> 0 || j' <> 0
+ then
+ let ni = p.Y + i'
+ let nj = p.X + j'
+ if ni >= 0 && ni < h && nj >= 0 && nj < w && nmsData.[ni, nj] = 1uy
+ then
+ nmsData.[ni, nj] <- 0uy
+ toVisit.Push(Point(nj, ni))
+
+ edges, xGradient, yGradient
\ No newline at end of file
--- /dev/null
+module ParasitemiaCore.Histogram
+
+open System
+open System.Drawing
+
+open Emgu.CV
+open Emgu.CV.Structure
+
+type Histogram = {
+ data: int[]
+ total: int // Number of elements.
+ sum: int // Sum of all intensity.
+ min: float32
+ max: float32 }
+
+let histogramImg (img: Image<Gray, float32>) (nbSamples: int) : Histogram =
+ let imgData = img.Data
+
+ let min, max =
+ let min = ref [| 0.0 |]
+ let minLocation = ref <| [| Point() |]
+ let max = ref [| 0.0 |]
+ let maxLocation = ref <| [| Point() |]
+ img.MinMax(min, max, minLocation, maxLocation)
+ float32 (!min).[0], float32 (!max).[0]
+
+ let inline bin (x: float32) : int =
+ let p = int ((x - min) / (max - min) * float32 nbSamples)
+ if p >= nbSamples then nbSamples - 1 else p
+
+ let data = Array.zeroCreate nbSamples
+
+ for i in 0 .. img.Height - 1 do
+ for j in 0 .. img.Width - 1 do
+ let p = bin imgData.[i, j, 0]
+ data.[p] <- data.[p] + 1
+
+ { data = data; total = img.Height * img.Width; sum = Array.sum data; min = min; max = max }
+
+let histogramMat (mat: Matrix<float32>) (nbSamples: int) : Histogram =
+ let matData = mat.Data
+
+ let min, max =
+ let min = ref 0.0
+ let minLocation = ref <| Point()
+ let max = ref 0.0
+ let maxLocation = ref <| Point()
+ mat.MinMax(min, max, minLocation, maxLocation)
+ float32 !min, float32 !max
+
+ let inline bin (x: float32) : int =
+ let p = int ((x - min) / (max - min) * float32 nbSamples)
+ if p >= nbSamples then nbSamples - 1 else p
+
+ let data = Array.zeroCreate nbSamples
+
+ for i in 0 .. mat.Height - 1 do
+ for j in 0 .. mat.Width - 1 do
+ let p = bin matData.[i, j]
+ data.[p] <- data.[p] + 1
+
+ { data = data; total = mat.Height * mat.Width; sum = Array.sum data; min = min; max = max }
+
+let histogram (values: float32 seq) (nbSamples: int) : Histogram =
+ let mutable min = Single.MaxValue
+ let mutable max = Single.MinValue
+ let mutable n = 0
+
+ for v in values do
+ n <- n + 1
+ if v < min then min <- v
+ if v > max then max <- v
+
+ let inline bin (x: float32) : int =
+ let p = int ((x - min) / (max - min) * float32 nbSamples)
+ if p >= nbSamples then nbSamples - 1 else p
+
+ let data = Array.zeroCreate nbSamples
+
+ for v in values do
+ let p = bin v
+ data.[p] <- data.[p] + 1
+
+ { data = data; total = n; sum = Array.sum data; min = min; max = max }
\ No newline at end of file
--- /dev/null
+module ParasitemiaCore.IO
+
+open System
+open System.Drawing
+
+open Emgu.CV
+open Emgu.CV.Structure
+
+let saveImg (img: Image<'TColor, 'TDepth>) (filepath: string) =
+ img.Save(filepath)
+
+let saveMat (mat: Matrix<'TDepth>) (filepath: string) =
+ use img = new Image<Gray, 'TDeph>(mat.Size)
+ mat.CopyTo(img)
+ saveImg img filepath
--- /dev/null
+module ParasitemiaCore.ImgTools
+
+open System
+open System.Drawing
+
+open Emgu.CV
+open Emgu.CV.Structure
+
+let normalize (img: Image<Gray, float32>) (upperLimit: float) : Image<Gray, float32> =
+ let min = ref [| 0.0 |]
+ let minLocation = ref <| [| Point() |]
+ let max = ref [| 0.0 |]
+ let maxLocation = ref <| [| Point() |]
+ img.MinMax(min, max, minLocation, maxLocation)
+ let normalized = (img - (!min).[0]) / ((!max).[0] - (!min).[0])
+ if upperLimit = 1.0
+ then normalized
+ else upperLimit * normalized
+
+let mergeChannels (img: Image<Bgr, float32>) (rgbWeights: float * float * float) : Image<Gray, float32> =
+ match rgbWeights with
+ | 1., 0., 0. -> img.[2]
+ | 0., 1., 0. -> img.[1]
+ | 0., 0., 1. -> img.[0]
+ | redFactor, greenFactor, blueFactor ->
+ let result = new Image<Gray, float32>(img.Size)
+ CvInvoke.AddWeighted(result, 1., img.[2], redFactor, 0., result)
+ CvInvoke.AddWeighted(result, 1., img.[1], greenFactor, 0., result)
+ CvInvoke.AddWeighted(result, 1., img.[0], blueFactor, 0., result)
+ result
+
+let mergeChannelsWithProjection (img: Image<Bgr, float32>) (v1r: float32, v1g: float32, v1b: float32) (v2r: float32, v2g: float32, v2b: float32) (upperLimit: float) : Image<Gray, float32> =
+ let vr, vg, vb = v2r - v1r, v2g - v1g, v2b - v1b
+ let vMagnitude = sqrt (vr ** 2.f + vg ** 2.f + vb ** 2.f)
+ let project (r: float32) (g: float32) (b: float32) = ((r - v1r) * vr + (g - v1g) * vg + (b - v1b) * vb) / vMagnitude
+ let result = new Image<Gray, float32>(img.Size)
+ // TODO: Essayer en bindant Data pour gagner du temps
+ for i in 0 .. img.Height - 1 do
+ for j in 0 .. img.Width - 1 do
+ result.Data.[i, j, 0] <- project img.Data.[i, j, 2] img.Data.[i, j, 1] img.Data.[i, j, 0]
+ normalize result upperLimit
+
+// Normalize image values between 0uy and 255uy.
+let normalizeAndConvert (img: Image<Gray, 'TDepth>) : Image<Gray, byte> =
+ (normalize (img.Convert<Gray, float32>()) 255.).Convert<Gray, byte>()
+
+let gaussianFilter (img : Image<'TColor, 'TDepth>) (standardDeviation : float) : Image<'TColor, 'TDepth> =
+ let size = 2 * int (ceil (4.0 * standardDeviation)) + 1
+ img.SmoothGaussian(size, size, standardDeviation, standardDeviation)
--- /dev/null
+module ParasitemiaCore.Morpho
+
+open System
+open System.Drawing
+open System.Collections.Generic
+open System.Linq
+
+open Emgu.CV
+open Emgu.CV.Structure
+
+open Types
+
+/// <summary>
+/// Remove M-adjacent pixels. It may be used after thinning.
+/// </summary>
+let suppressMAdjacency (img: Matrix<byte>) =
+ let w = img.Width
+ let h = img.Height
+ for i in 1 .. h - 2 do
+ for j in 1 .. w - 2 do
+ if img.[i, j] > 0uy && img.Data.[i + 1, j] > 0uy && (img.Data.[i, j - 1] > 0uy && img.Data.[i - 1, j + 1] = 0uy || img.Data.[i, j + 1] > 0uy && img.Data.[i - 1, j - 1] = 0uy)
+ then
+ img.[i, j] <- 0uy
+ for i in 1 .. h - 2 do
+ for j in 1 .. w - 2 do
+ if img.[i, j] > 0uy && img.Data.[i - 1, j] > 0uy && (img.Data.[i, j - 1] > 0uy && img.Data.[i + 1, j + 1] = 0uy || img.Data.[i, j + 1] > 0uy && img.Data.[i + 1, j - 1] = 0uy)
+ then
+ img.[i, j] <- 0uy
+
+type ExtremumType =
+ | Maxima = 1
+ | Minima = 2
+
+let findExtremum (img: Image<Gray, 'TDepth>) (extremumType: ExtremumType) : IEnumerable<Points> =
+ let w = img.Width
+ let h = img.Height
+ let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+ let imgData = img.Data
+ let suppress: bool[,] = Array2D.zeroCreate h w
+
+ let result = List<List<Point>>()
+
+ let flood (start: Point) : List<List<Point>> =
+ let sameLevelToCheck = Stack<Point>()
+ let betterLevelToCheck = Stack<Point>()
+ betterLevelToCheck.Push(start)
+
+ let result' = List<List<Point>>()
+
+ while betterLevelToCheck.Count > 0 do
+ let p = betterLevelToCheck.Pop()
+ if not suppress.[p.Y, p.X]
+ then
+ suppress.[p.Y, p.X] <- true
+ sameLevelToCheck.Push(p)
+ let current = List<Point>()
+
+ let mutable betterExists = false
+
+ while sameLevelToCheck.Count > 0 do
+ let p' = sameLevelToCheck.Pop()
+ let currentLevel = imgData.[p'.Y, p'.X, 0]
+ current.Add(p') |> ignore
+ for i, j in se do
+ let ni = i + p'.Y
+ let nj = j + p'.X
+ if ni >= 0 && ni < h && nj >= 0 && nj < w
+ then
+ let level = imgData.[ni, nj, 0]
+ let notSuppressed = not suppress.[ni, nj]
+
+ if level = currentLevel && notSuppressed
+ then
+ suppress.[ni, nj] <- true
+ sameLevelToCheck.Push(Point(nj, ni))
+ elif if extremumType = ExtremumType.Maxima then level > currentLevel else level < currentLevel
+ then
+ betterExists <- true
+ if notSuppressed
+ then
+ betterLevelToCheck.Push(Point(nj, ni))
+
+ if not betterExists
+ then
+ result'.Add(current)
+ result'
+
+ for i in 0 .. h - 1 do
+ for j in 0 .. w - 1 do
+ let maxima = flood (Point(j, i))
+ if maxima.Count > 0
+ then
+ result.AddRange(maxima)
+
+ result.Select(fun l -> Points(l))
+
+let findMaxima (img: Image<Gray, 'TDepth>) : IEnumerable<Points> =
+ findExtremum img ExtremumType.Maxima
+
+let findMinima (img: Image<Gray, 'TDepth>) : IEnumerable<Points> =
+ findExtremum img ExtremumType.Minima
+
+type PriorityQueue () =
+ let size = 256
+ let q: Points[] = Array.init size (fun i -> Points())
+ let mutable highest = -1 // Value of the first elements of 'q'.
+ let mutable lowest = size
+
+ member this.NextMax () : byte * Point =
+ if this.IsEmpty
+ then
+ invalidOp "Queue is empty"
+ else
+ let l = q.[highest]
+ let next = l.First()
+ l.Remove(next) |> ignore
+ let value = byte highest
+
+ if l.Count = 0
+ then
+ highest <- highest - 1
+ while highest > lowest && q.[highest].Count = 0 do
+ highest <- highest - 1
+ if highest = lowest
+ then
+ highest <- -1
+ lowest <- size
+
+ value, next
+
+ member this.NextMin () : byte * Point =
+ if this.IsEmpty
+ then
+ invalidOp "Queue is empty"
+ else
+ let l = q.[lowest + 1]
+ let next = l.First()
+ l.Remove(next) |> ignore
+ let value = byte (lowest + 1)
+
+ if l.Count = 0
+ then
+ lowest <- lowest + 1
+ while lowest < highest && q.[lowest + 1].Count = 0 do
+ lowest <- lowest + 1
+ if highest = lowest
+ then
+ highest <- -1
+ lowest <- size
+
+ value, next
+
+ member this.Max =
+ highest |> byte
+
+ member this.Min =
+ lowest + 1 |> byte
+
+ member this.Add (value: byte) (p: Point) =
+ let vi = int value
+
+ if vi > highest
+ then
+ highest <- vi
+ if vi <= lowest
+ then
+ lowest <- vi - 1
+
+ q.[vi].Add(p) |> ignore
+
+ member this.Remove (value: byte) (p: Point) =
+ let vi = int value
+ if q.[vi].Remove(p) && q.[vi].Count = 0
+ then
+ if vi = highest
+ then
+ highest <- highest - 1
+ while highest > lowest && q.[highest].Count = 0 do
+ highest <- highest - 1
+ elif vi - 1 = lowest
+ then
+ lowest <- lowest + 1
+ while lowest < highest && q.[lowest + 1].Count = 0 do
+ lowest <- lowest + 1
+
+ if highest = lowest // The queue is now empty.
+ then
+ highest <- -1
+ lowest <- size
+
+ member this.IsEmpty =
+ highest = -1
+
+ member this.Clear () =
+ while highest > lowest do
+ q.[highest].Clear()
+ highest <- highest - 1
+ highest <- -1
+ lowest <- size
+
+type private AreaState =
+ | Removed = 1
+ | Unprocessed = 2
+ | Validated = 3
+
+type private AreaOperation =
+ | Opening = 1
+ | Closing = 2
+
+[<AllowNullLiteral>]
+type private Area (elements: Points) =
+ member this.Elements = elements
+ member val Intensity = None with get, set
+ member val State = AreaState.Unprocessed with get, set
+
+let private areaOperation (img: Image<Gray, byte>) (area: int) (op: AreaOperation) =
+ let w = img.Width
+ let h = img.Height
+ let imgData = img.Data
+ let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+ let areas = List<Area>((if op = AreaOperation.Opening then findMaxima img else findMinima img) |> Seq.map Area)
+
+ let pixels: Area[,] = Array2D.create h w null
+ for m in areas do
+ for e in m.Elements do
+ pixels.[e.Y, e.X] <- m
+
+ let queue = PriorityQueue()
+
+ let addEdgeToQueue (elements: Points) =
+ for p in elements do
+ for i, j in se do
+ let ni = i + p.Y
+ let nj = j + p.X
+ let p' = Point(nj, ni)
+ if ni >= 0 && ni < h && nj >= 0 && nj < w && not (elements.Contains(p'))
+ then
+ queue.Add (imgData.[ni, nj, 0]) p'
+
+ // Reverse order is quicker.
+ for i in areas.Count - 1 .. -1 .. 0 do
+ let m = areas.[i]
+ if m.Elements.Count <= area && m.State <> AreaState.Removed
+ then
+ queue.Clear()
+ addEdgeToQueue m.Elements
+
+ let mutable intensity = if op = AreaOperation.Opening then queue.Max else queue.Min
+ let nextElements = Points()
+
+ let mutable stop = false
+ while not stop do
+ let intensity', p = if op = AreaOperation.Opening then queue.NextMax () else queue.NextMin ()
+ let mutable merged = false
+
+ if intensity' = intensity // The intensity doesn't change.
+ then
+ if m.Elements.Count + nextElements.Count + 1 > area
+ then
+ m.State <- AreaState.Validated
+ m.Intensity <- Some intensity
+ stop <- true
+ else
+ nextElements.Add(p) |> ignore
+
+ elif if op = AreaOperation.Opening then intensity' < intensity else intensity' > intensity
+ then
+ m.Elements.UnionWith(nextElements)
+ for e in nextElements do
+ pixels.[e.Y, e.X] <- m
+
+ if m.Elements.Count = area
+ then
+ m.State <- AreaState.Validated
+ m.Intensity <- Some (intensity')
+ stop <- true
+ else
+ intensity <- intensity'
+ nextElements.Clear()
+ nextElements.Add(p) |> ignore
+
+ else
+ match pixels.[p.Y, p.X] with
+ | null -> ()
+ | m' ->
+ if m'.Elements.Count + m.Elements.Count <= area
+ then
+ m'.State <- AreaState.Removed
+ for e in m'.Elements do
+ pixels.[e.Y, e.X] <- m
+ queue.Remove imgData.[e.Y, e.X, 0] e
+ addEdgeToQueue m'.Elements
+ m.Elements.UnionWith(m'.Elements)
+ let intensityMax = if op = AreaOperation.Opening then queue.Max else queue.Min
+ if intensityMax <> intensity
+ then
+ intensity <- intensityMax
+ nextElements.Clear()
+ merged <- true
+
+ if not merged
+ then
+ m.State <- AreaState.Validated
+ m.Intensity <- Some (intensity)
+ stop <- true
+
+ if not stop && not merged
+ then
+ for i, j in se do
+ let ni = i + p.Y
+ let nj = j + p.X
+ let p' = Point(nj, ni)
+ if ni < 0 || ni >= h || nj < 0 || nj >= w
+ then
+ m.State <- AreaState.Validated
+ m.Intensity <- Some (intensity)
+ stop <- true
+ elif not (m.Elements.Contains(p')) && not (nextElements.Contains(p'))
+ then
+ queue.Add (imgData.[ni, nj, 0]) p'
+
+ if queue.IsEmpty
+ then
+ if m.Elements.Count + nextElements.Count <= area
+ then
+ m.State <- AreaState.Validated
+ m.Intensity <- Some intensity'
+ m.Elements.UnionWith(nextElements)
+ stop <- true
+
+ for m in areas do
+ if m.State = AreaState.Validated
+ then
+ match m.Intensity with
+ | Some i ->
+ for p in m.Elements do
+ imgData.[p.Y, p.X, 0] <- i
+ | _ -> ()
+ ()
+
+/// <summary>
+/// Area opening on byte image.
+/// </summary>
+let areaOpen (img: Image<Gray, byte>) (area: int) =
+ areaOperation img area AreaOperation.Opening
+
+/// <summary>
+/// Area closing on byte image.
+/// </summary>
+let areaClose (img: Image<Gray, byte>) (area: int) =
+ areaOperation img area AreaOperation.Closing
+
+// A simpler algorithm than 'areaOpen' on byte image but slower.
+let areaOpen2 (img: Image<Gray, byte>) (area: int) =
+ let w = img.Width
+ let h = img.Height
+ let imgData = img.Data
+ let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+ let histogram = Array.zeroCreate 256
+ for i in 0 .. h - 1 do
+ for j in 0 .. w - 1 do
+ let v = imgData.[i, j, 0] |> int
+ histogram.[v] <- histogram.[v] + 1
+
+ let flooded : bool[,] = Array2D.zeroCreate h w
+
+ let pointsChecked = HashSet<Point>()
+ let pointsToCheck = Stack<Point>()
+
+ for level in 255 .. -1 .. 0 do
+ let mutable n = histogram.[level]
+ if n > 0
+ then
+ for i in 0 .. h - 1 do
+ for j in 0 .. w - 1 do
+ if not flooded.[i, j] && imgData.[i, j, 0] = byte level
+ then
+ let mutable maxNeighborValue = 0uy
+ pointsChecked.Clear()
+ pointsToCheck.Clear()
+ pointsToCheck.Push(Point(j, i))
+
+ while pointsToCheck.Count > 0 do
+ let next = pointsToCheck.Pop()
+ pointsChecked.Add(next) |> ignore
+ flooded.[next.Y, next.X] <- true
+
+ for nx, ny in se do
+ let p = Point(next.X + nx, next.Y + ny)
+ if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h
+ then
+ let v = imgData.[p.Y, p.X, 0]
+ if v = byte level
+ then
+ if not (pointsChecked.Contains(p))
+ then
+ pointsToCheck.Push(p)
+ elif v > maxNeighborValue
+ then
+ maxNeighborValue <- v
+
+ if int maxNeighborValue < level && pointsChecked.Count <= area
+ then
+ for p in pointsChecked do
+ imgData.[p.Y, p.X, 0] <- maxNeighborValue
+
+[<AllowNullLiteral>]
+type Island (cmp: IComparer<float32>) =
+ member val Shore = Heap.Heap<float32, Point>(cmp) with get
+ member val Level = 0.f with get, set
+ member val Surface = 0 with get, set
+ member this.IsInfinite = this.Surface = Int32.MaxValue
+
+let private areaOperationF (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: ('a -> float32 -> unit) option) (op: AreaOperation) =
+ let w = img.Width
+ let h = img.Height
+ let earth = img.Data
+ let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+ let comparer = if op = AreaOperation.Opening
+ then { new IComparer<float32> with member this.Compare(v1, v2) = v1.CompareTo(v2) }
+ else { new IComparer<float32> with member this.Compare(v1, v2) = v2.CompareTo(v1) }
+
+ let ownership: Island[,] = Array2D.create h w null
+
+ // Initialize islands with their shore.
+ let islands = List<Island>()
+ let extremum = img |> if op = AreaOperation.Opening then findMaxima else findMinima
+ for e in extremum do
+ let island =
+ let p = e.First()
+ Island(comparer, Level = earth.[p.Y, p.X, 0], Surface = e.Count)
+ islands.Add(island)
+ let shorePoints = Points()
+ for p in e do
+ ownership.[p.Y, p.X] <- island
+ for i, j in se do
+ let ni = i + p.Y
+ let nj = j + p.X
+ let neighbor = Point(nj, ni)
+ if ni >= 0 && ni < h && nj >= 0 && nj < w && Object.ReferenceEquals(ownership.[ni, nj], null) && not (shorePoints.Contains(neighbor))
+ then
+ shorePoints.Add(neighbor) |> ignore
+ island.Shore.Add earth.[ni, nj, 0] neighbor
+
+ for area, obj in areas do
+ for island in islands do
+ let mutable stop = island.Shore.IsEmpty
+
+ // 'true' if 'p' is owned or adjacent to 'island'.
+ let inline ownedOrAdjacent (p: Point) : bool =
+ ownership.[p.Y, p.X] = island ||
+ (p.Y > 0 && ownership.[p.Y - 1, p.X] = island) ||
+ (p.Y < h - 1 && ownership.[p.Y + 1, p.X] = island) ||
+ (p.X > 0 && ownership.[p.Y, p.X - 1] = island) ||
+ (p.X < w - 1 && ownership.[p.Y, p.X + 1] = island)
+
+ while not stop && island.Surface < area do
+ let level, next = island.Shore.Max
+ let other = ownership.[next.Y, next.X]
+ if other = island // During merging, some points on the shore may be owned by the island itself -> ignored.
+ then
+ island.Shore.RemoveNext ()
+ else
+ if not <| Object.ReferenceEquals(other, null)
+ then // We touching another island.
+ if island.IsInfinite || other.IsInfinite || island.Surface + other.Surface >= area || comparer.Compare(island.Level, other.Level) < 0
+ then
+ stop <- true
+ else // We can merge 'other' into 'surface'.
+ island.Surface <- island.Surface + other.Surface
+ island.Level <- other.Level
+ // island.Level <- if comparer.Compare(island.Level, other.Level) > 0 then other.Level else island.Level
+ for l, p in other.Shore do
+ let mutable currentY = p.Y + 1
+ while currentY < h && ownership.[currentY, p.X] = other do
+ ownership.[currentY, p.X] <- island
+ currentY <- currentY + 1
+ island.Shore.Add l p
+ other.Shore.Clear()
+
+ elif comparer.Compare(level, island.Level) > 0
+ then
+ stop <- true
+ else
+ island.Shore.RemoveNext ()
+ for i, j in se do
+ let ni = i + next.Y
+ let nj = j + next.X
+ if ni < 0 || ni >= h || nj < 0 || nj >= w
+ then
+ island.Surface <- Int32.MaxValue
+ stop <- true
+ else
+ let neighbor = Point(nj, ni)
+ if not <| ownedOrAdjacent neighbor
+ then
+ island.Shore.Add earth.[ni, nj, 0] neighbor
+ if not stop
+ then
+ ownership.[next.Y, next.X] <- island
+ island.Level <- level
+ island.Surface <- island.Surface + 1
+
+ let mutable diff = 0.f
+
+ for i in 0 .. h - 1 do
+ for j in 0 .. w - 1 do
+ match ownership.[i, j] with
+ | null -> ()
+ | island ->
+ let l = island.Level
+ diff <- diff + l - earth.[i, j, 0]
+ earth.[i, j, 0] <- l
+
+ match f with
+ | Some f' -> f' obj diff
+ | _ -> ()
+ ()
+
+/// <summary>
+/// Area opening on float image.
+/// </summary>
+let areaOpenF (img: Image<Gray, float32>) (area: int) =
+ areaOperationF img [ area, () ] None AreaOperation.Opening
+
+/// <summary>
+/// Area closing on float image.
+/// </summary>
+let areaCloseF (img: Image<Gray, float32>) (area: int) =
+ areaOperationF img [ area, () ] None AreaOperation.Closing
+
+/// <summary>
+/// Area closing on float image with different areas. Given areas must be sorted increasingly.
+/// For each area the function 'f' is called with the associated area value of type 'a and the volume difference
+/// Between the previous and the current closing.
+/// </summary>
+let areaOpenFWithFun (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: 'a -> float32 -> unit) =
+ areaOperationF img areas (Some f) AreaOperation.Opening
+
+/// <summary>
+/// Same as 'areaOpenFWithFun' for closing operation.
+/// </summary>
+let areaCloseFWithFun (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: 'a -> float32 -> unit) =
+ areaOperationF img areas (Some f) AreaOperation.Closing
+
+/// <summary>
+/// Zhang and Suen thinning algorithm.
+/// Modify 'mat' in place.
+/// </summary>
+let thin (mat: Matrix<byte>) =
+ let w = mat.Width
+ let h = mat.Height
+ let mutable data1 = mat.Data
+ let mutable data2 = Array2D.copy data1
+
+ let mutable pixelChanged = true
+ let mutable oddIteration = true
+
+ while pixelChanged do
+ pixelChanged <- false
+ for i in 0..h-1 do
+ for j in 0..w-1 do
+ if data1.[i, j] = 1uy
+ then
+ let p2 = if i = 0 then 0uy else data1.[i-1, j]
+ let p3 = if i = 0 || j = w-1 then 0uy else data1.[i-1, j+1]
+ let p4 = if j = w-1 then 0uy else data1.[i, j+1]
+ let p5 = if i = h-1 || j = w-1 then 0uy else data1.[i+1, j+1]
+ let p6 = if i = h-1 then 0uy else data1.[i+1, j]
+ let p7 = if i = h-1 || j = 0 then 0uy else data1.[i+1, j-1]
+ let p8 = if j = 0 then 0uy else data1.[i, j-1]
+ let p9 = if i = 0 || j = 0 then 0uy else data1.[i-1, j-1]
+
+ let sumNeighbors = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9
+ if sumNeighbors >= 2uy && sumNeighbors <= 6uy &&
+ (if p2 = 0uy && p3 = 1uy then 1 else 0) +
+ (if p3 = 0uy && p4 = 1uy then 1 else 0) +
+ (if p4 = 0uy && p5 = 1uy then 1 else 0) +
+ (if p5 = 0uy && p6 = 1uy then 1 else 0) +
+ (if p6 = 0uy && p7 = 1uy then 1 else 0) +
+ (if p7 = 0uy && p8 = 1uy then 1 else 0) +
+ (if p8 = 0uy && p9 = 1uy then 1 else 0) +
+ (if p9 = 0uy && p2 = 1uy then 1 else 0) = 1 &&
+ if oddIteration
+ then p2 * p4 * p6 = 0uy && p4 * p6 * p8 = 0uy
+ else p2 * p4 * p8 = 0uy && p2 * p6 * p8 = 0uy
+ then
+ data2.[i, j] <- 0uy
+ pixelChanged <- true
+ else
+ data2.[i, j] <- 0uy
+
+ oddIteration <- not oddIteration
+ let tmp = data1
+ data1 <- data2
+ data2 <- tmp
+
+/// <summary>
+/// Remove all 8-connected pixels with an area equal or greater than 'areaSize'.
+/// Modify 'mat' in place.
+/// </summary>
+let removeArea (mat: Matrix<byte>) (areaSize: int) =
+ let neighbors = [|
+ (-1, 0) // p2
+ (-1, 1) // p3
+ ( 0, 1) // p4
+ ( 1, 1) // p5
+ ( 1, 0) // p6
+ ( 1, -1) // p7
+ ( 0, -1) // p8
+ (-1, -1) |] // p9
+
+ use mat' = new Matrix<byte>(mat.Size)
+ let w = mat'.Width
+ let h = mat'.Height
+ mat.CopyTo(mat')
+
+ let data = mat.Data
+ let data' = mat'.Data
+
+ for i in 0..h-1 do
+ for j in 0..w-1 do
+ if data'.[i, j] = 1uy
+ then
+ let neighborhood = List<Point>()
+ let neighborsToCheck = Stack<Point>()
+ neighborsToCheck.Push(Point(j, i))
+ data'.[i, j] <- 0uy
+
+ while neighborsToCheck.Count > 0 do
+ let n = neighborsToCheck.Pop()
+ neighborhood.Add(n)
+ for (ni, nj) in neighbors do
+ let pi = n.Y + ni
+ let pj = n.X + nj
+ if pi >= 0 && pi < h && pj >= 0 && pj < w && data'.[pi, pj] = 1uy
+ then
+ neighborsToCheck.Push(Point(pj, pi))
+ data'.[pi, pj] <- 0uy
+ if neighborhood.Count <= areaSize
+ then
+ for n in neighborhood do
+ data.[n.Y, n.X] <- 0uy
+
+let connectedComponents (img: Image<Gray, byte>) (startPoints: List<Point>) : Points =
+ let w = img.Width
+ let h = img.Height
+
+ let pointChecked = Points()
+ let pointToCheck = Stack<Point>(startPoints);
+
+ let data = img.Data
+
+ while pointToCheck.Count > 0 do
+ let next = pointToCheck.Pop()
+ pointChecked.Add(next) |> ignore
+ for ny in -1 .. 1 do
+ for nx in -1 .. 1 do
+ if ny <> 0 && nx <> 0
+ then
+ let p = Point(next.X + nx, next.Y + ny)
+ if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h && data.[p.Y, p.X, 0] > 0uy && not (pointChecked.Contains p)
+ then
+ pointToCheck.Push(p)
+
+ pointChecked
--- /dev/null
+module ParasitemiaCore.Otsu
+
+open Histogram
+
+let otsu (hist: Histogram) : float32 * float32 * float32 =
+ let mutable sumB = 0
+ let mutable wB = 0
+ let mutable maximum = 0.0
+ let mutable level = 0
+ let sum = hist.data |> Array.mapi (fun i v -> i * v |> float) |> Array.sum
+
+ for i in 0 .. hist.data.Length - 1 do
+ wB <- wB + hist.data.[i]
+ if wB <> 0
+ then
+ let wF = hist.total - wB
+ if wF <> 0
+ then
+ sumB <- sumB + i * hist.data.[i]
+ let mB = (float sumB) / (float wB)
+ let mF = (sum - float sumB) / (float wF)
+ let between = (float wB) * (float wF) * (mB - mF) ** 2.;
+ if between >= maximum
+ then
+ level <- i
+ maximum <- between
+
+ let mean1 =
+ let mutable sum = 0
+ let mutable nb = 0
+ for i in 0 .. level - 1 do
+ sum <- sum + i * hist.data.[i]
+ nb <- nb + hist.data.[i]
+ (sum + level * hist.data.[level] / 2) / (nb + hist.data.[level] / 2)
+
+ let mean2 =
+ let mutable sum = 0
+ let mutable nb = 0
+ for i in level + 1 .. hist.data.Length - 1 do
+ sum <- sum + i * hist.data.[i]
+ nb <- nb + hist.data.[i]
+ (sum + level * hist.data.[level] / 2) / (nb + hist.data.[level] / 2)
+
+ let toFloat l =
+ float32 l / float32 hist.data.Length * (hist.max - hist.min) + hist.min
+
+ toFloat level, toFloat mean1, toFloat mean2
\ No newline at end of file
open Logger
open Utils
+open Morpho
open ImgTools
open Config
open Types
logTimeWithName "Parasites segmentation" (fun () -> reportWithVal 40 (ParasitesMarker.find img_parasites_filtered config))
let! edges, xGradient, yGradient = logTimeWithName "Finding edges" (fun () ->
- let edges, xGradient, yGradient = findEdges img_RBC_filtered
+ let edges, xGradient, yGradient = Edges.find img_RBC_filtered
removeArea edges (config.RBCRadius.Pixel ** 2.f / 50.f |> int)
reportWithVal 50 (edges, xGradient, yGradient))
let buildFileName postfix = System.IO.Path.Combine(dirPath, name + postfix)
- saveMat (edges * 255.0) (buildFileName " - edges.png")
+ IO.saveMat (edges * 255.0) (buildFileName " - edges.png")
- saveImg parasites.darkStain (buildFileName " - parasites - dark stain.png")
- saveImg parasites.parasite (buildFileName " - parasites - stain.png")
- saveImg parasites.nucleus (buildFileName " - parasites - infection.png")
+ IO.saveImg parasites.darkStain (buildFileName " - parasites - dark stain.png")
+ IO.saveImg parasites.parasite (buildFileName " - parasites - stain.png")
+ IO.saveImg parasites.nucleus (buildFileName " - parasites - infection.png")
let imgAllEllipses = img.Copy()
- drawEllipses imgAllEllipses matchingEllipses.Ellipses (Bgr(255.0, 255.0, 255.0)) 0.04
- saveImg imgAllEllipses (buildFileName " - ellipses - all.png")
+ Drawing.drawEllipses imgAllEllipses matchingEllipses.Ellipses (Bgr(255.0, 255.0, 255.0)) 0.04
+ IO.saveImg imgAllEllipses (buildFileName " - ellipses - all.png")
let imgEllipses = img_RBC_filtered.Convert<Bgr, byte>()
- drawEllipses imgEllipses prunedEllipses (Bgr(0.0, 240.0, 240.0)) 1.0
- saveImg imgEllipses (buildFileName " - ellipses.png")
+ Drawing.drawEllipses imgEllipses prunedEllipses (Bgr(0.0, 240.0, 240.0)) 1.0
+ IO.saveImg imgEllipses (buildFileName " - ellipses.png")
let imgCells = img.Copy()
- drawCells imgCells false cells
- saveImg imgCells (buildFileName " - cells.png")
+ Drawing.drawCells imgCells false cells
+ IO.saveImg imgCells (buildFileName " - cells.png")
let imgCells' = img.Copy()
- drawCells imgCells' true cells
- saveImg imgCells' (buildFileName " - cells - full.png")
+ Drawing.drawCells imgCells' true cells
+ IO.saveImg imgCells' (buildFileName " - cells - full.png")
let filteredGreenMaxima = gaussianFilter img_RBC config.LPFStandardDeviationRBC
for m in findMaxima filteredGreenMaxima do
- drawPoints filteredGreenMaxima m 255.f
- saveImg filteredGreenMaxima (buildFileName " - filtered - maxima.png")
+ Drawing.drawPoints filteredGreenMaxima m 255.f
+ IO.saveImg filteredGreenMaxima (buildFileName " - filtered - maxima.png")
- saveImg img_RBC_filtered (buildFileName " - filtered.png")
- saveImg imgWhitoutParasite (buildFileName " - filtered closed stain.png")
- saveImg imgWithoutNucleus (buildFileName " - filtered closed infection.png")
+ IO.saveImg img_RBC_filtered (buildFileName " - filtered.png")
+ IO.saveImg imgWhitoutParasite (buildFileName " - filtered closed stain.png")
+ IO.saveImg imgWithoutNucleus (buildFileName " - filtered closed infection.png")
- saveImg img_RBC (buildFileName " - source - RBC.png")
- saveImg img_parasites (buildFileName " - source - parasites.png")
+ IO.saveImg img_RBC (buildFileName " - source - RBC.png")
+ IO.saveImg img_parasites (buildFileName " - source - parasites.png")
- saveImg (normalize img_float.[2] 255.) (buildFileName " - source - red.png")
- saveImg (normalize img_float.[1] 255.) (buildFileName " - source - green.png")
- saveImg (normalize img_float.[0] 255.) (buildFileName " - source - blue.png")
+ IO.saveImg (normalize img_float.[2] 255.) (buildFileName " - source - red.png")
+ IO.saveImg (normalize img_float.[1] 255.) (buildFileName " - source - green.png")
+ IO.saveImg (normalize img_float.[0] 255.) (buildFileName " - source - blue.png")
| _ -> ()
return cells }
<Compile Include="Types.fs" />
<Compile Include="EEOver.fs" />
<Compile Include="Utils.fs" />
- <Compile Include="ImgTools.fs" />
+ <Compile Include="ImgTools\Histogram.fs" />
+ <Compile Include="ImgTools\Otsu.fs" />
+ <Compile Include="ImgTools\Drawing.fs" />
+ <Compile Include="ImgTools\Edges.fs" />
+ <Compile Include="ImgTools\Morpho.fs" />
+ <Compile Include="ImgTools\IO.fs" />
+ <Compile Include="ImgTools\ImgTools.fs" />
<Compile Include="Granulometry.fs" />
<Compile Include="Config.fs" />
<Compile Include="KMedians.fs" />
open Emgu.CV.Structure
open Utils
+open Histogram
+open Otsu
+open Morpho
open ImgTools
type Result = {
module ParasitemiaCore.UnitsOfMeasure
-[<Measure>] type px
+[<Measure>] type px // Pixel.
[<Measure>] type μm
[<Measure>] type inch
-[<Measure>] type ppi = px / inch
+[<Measure>] type ppi = px / inch // Pixel per inch.
let μmInchRatio = 25.4e3<μm/inch>
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
- x:Name="AboutWindow" Height="200.969" Width="282.313" MinHeight="100" MinWidth="100" Title="About" Icon="pack://application:,,,/Resources/icon.ico">
+ x:Name="AboutWindow" Height="220" Width="280" MinHeight="220" MinWidth="280" Title="About" Icon="pack://application:,,,/Resources/icon.ico" ResizeMode="NoResize">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>