open Heap
open Const
+open Types
open Utils
// Normalize image values between 0uy and 255uy.
toFloat level, toFloat mean1, toFloat mean2
-let suppressMConnections (img: Matrix<byte>) =
+/// <summary>
+/// Remove M-adjacent pixels. It may be used after thinning.
+/// </summary>
+let suppressMAdjacency (img: Matrix<byte>) =
let w = img.Width
let h = img.Height
for i in 1 .. h - 2 do
then
img.[i, j] <- 0uy
+/// <summary>
+/// Find edges of an image by using the Canny approach.
+/// The thresholds are automatically defined with otsu on gradient magnitudes.
+/// </summary>
+/// <param name="img"></param>
let findEdges (img: Image<Gray, float32>) : Matrix<byte> * Image<Gray, float32> * Image<Gray, float32> =
let w = img.Width
let h = img.Height
use magnitudes = new Matrix<float32>(xGradient.Size)
use angles = new Matrix<float32>(xGradient.Size)
- CvInvoke.CartToPolar(xGradient, yGradient, magnitudes, angles) // Compute the magnitudes (without angles).
+ CvInvoke.CartToPolar(xGradient, yGradient, magnitudes, angles) // Compute the magnitudes and angles.
let thresholdHigh, thresholdLow =
let sensibilityHigh = 0.1f
let xGradientData = xGradient.Data
let yGradientData = yGradient.Data
- let PI = float32 Math.PI
-
for i in 0 .. h - 1 do
nmsData.[i, 0] <- 0uy
nmsData.[i, w - 1] <- 0uy
let size = 2 * int (ceil (4.0 * standardDeviation)) + 1
img.SmoothGaussian(size, size, standardDeviation, standardDeviation)
-type Points = HashSet<Point>
-
let drawPoints (img: Image<Gray, 'TDepth>) (points: Points) (intensity: 'TDepth) =
for p in points do
img.Data.[p.Y, p.X, 0] <- intensity
| _ -> ()
()
+/// <summary>
+/// Area opening on byte image.
+/// </summary>
let areaOpen (img: Image<Gray, byte>) (area: int) =
areaOperation img area AreaOperation.Opening
+/// <summary>
+/// Area closing on byte image.
+/// </summary>
let areaClose (img: Image<Gray, byte>) (area: int) =
areaOperation img area AreaOperation.Closing
+// A simpler algorithm than 'areaOpen' on byte image but slower.
+let areaOpen2 (img: Image<Gray, byte>) (area: int) =
+ let w = img.Width
+ let h = img.Height
+ let imgData = img.Data
+ let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
+
+ let histogram = Array.zeroCreate 256
+ for i in 0 .. h - 1 do
+ for j in 0 .. w - 1 do
+ let v = imgData.[i, j, 0] |> int
+ histogram.[v] <- histogram.[v] + 1
+
+ let flooded : bool[,] = Array2D.zeroCreate h w
+
+ let pointsChecked = HashSet<Point>()
+ let pointsToCheck = Stack<Point>()
+
+ for level in 255 .. -1 .. 0 do
+ let mutable n = histogram.[level]
+ if n > 0
+ then
+ for i in 0 .. h - 1 do
+ for j in 0 .. w - 1 do
+ if not flooded.[i, j] && imgData.[i, j, 0] = byte level
+ then
+ let mutable maxNeighborValue = 0uy
+ pointsChecked.Clear()
+ pointsToCheck.Clear()
+ pointsToCheck.Push(Point(j, i))
+
+ while pointsToCheck.Count > 0 do
+ let next = pointsToCheck.Pop()
+ pointsChecked.Add(next) |> ignore
+ flooded.[next.Y, next.X] <- true
+
+ for nx, ny in se do
+ let p = Point(next.X + nx, next.Y + ny)
+ if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h
+ then
+ let v = imgData.[p.Y, p.X, 0]
+ if v = byte level
+ then
+ if not (pointsChecked.Contains(p))
+ then
+ pointsToCheck.Push(p)
+ elif v > maxNeighborValue
+ then
+ maxNeighborValue <- v
+
+ if int maxNeighborValue < level && pointsChecked.Count <= area
+ then
+ for p in pointsChecked do
+ imgData.[p.Y, p.X, 0] <- maxNeighborValue
+
[<AllowNullLiteral>]
type Island (cmp: IComparer<float32>) =
member val Shore = Heap.Heap<float32, Point>(cmp) with get
| _ -> ()
()
+/// <summary>
+/// Area opening on float image.
+/// </summary>
let areaOpenF (img: Image<Gray, float32>) (area: int) =
areaOperationF img [ area, () ] None AreaOperation.Opening
+/// <summary>
+/// Area closing on float image.
+/// </summary>
let areaCloseF (img: Image<Gray, float32>) (area: int) =
areaOperationF img [ area, () ] None AreaOperation.Closing
+/// <summary>
+/// Area closing on float image with different areas. Given areas must be sorted increasingly.
+/// For each area the function 'f' is called with the associated area value of type 'a and the volume difference
+/// Between the previous and the current closing.
+/// </summary>
let areaOpenFWithFun (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: 'a -> float32 -> unit) =
areaOperationF img areas (Some f) AreaOperation.Opening
+/// <summary>
+/// Same as 'areaOpenFWithFun' for closing operation.
+/// </summary>
let areaCloseFWithFun (img: Image<Gray, float32>) (areas: (int * 'a) list) (f: 'a -> float32 -> unit) =
areaOperationF img areas (Some f) AreaOperation.Closing
-// A simpler algorithm than 'areaOpen' but slower.
-let areaOpen2 (img: Image<Gray, byte>) (area: int) =
- let w = img.Width
- let h = img.Height
- let imgData = img.Data
- let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |]
-
- let histogram = Array.zeroCreate 256
- for i in 0 .. h - 1 do
- for j in 0 .. w - 1 do
- let v = imgData.[i, j, 0] |> int
- histogram.[v] <- histogram.[v] + 1
-
- let flooded : bool[,] = Array2D.zeroCreate h w
-
- let pointsChecked = HashSet<Point>()
- let pointsToCheck = Stack<Point>()
-
- for level in 255 .. -1 .. 0 do
- let mutable n = histogram.[level]
- if n > 0
- then
- for i in 0 .. h - 1 do
- for j in 0 .. w - 1 do
- if not flooded.[i, j] && imgData.[i, j, 0] = byte level
- then
- let mutable maxNeighborValue = 0uy
- pointsChecked.Clear()
- pointsToCheck.Clear()
- pointsToCheck.Push(Point(j, i))
-
- while pointsToCheck.Count > 0 do
- let next = pointsToCheck.Pop()
- pointsChecked.Add(next) |> ignore
- flooded.[next.Y, next.X] <- true
-
- for nx, ny in se do
- let p = Point(next.X + nx, next.Y + ny)
- if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h
- then
- let v = imgData.[p.Y, p.X, 0]
- if v = byte level
- then
- if not (pointsChecked.Contains(p))
- then
- pointsToCheck.Push(p)
- elif v > maxNeighborValue
- then
- maxNeighborValue <- v
-
- if int maxNeighborValue < level && pointsChecked.Count <= area
- then
- for p in pointsChecked do
- imgData.[p.Y, p.X, 0] <- maxNeighborValue
-
-// Zhang and Suen algorithm.
-// Modify 'mat' in place.
+/// <summary>
+/// Zhang and Suen thinning algorithm.
+/// Modify 'mat' in place.
+/// </summary>
let thin (mat: Matrix<byte>) =
let w = mat.Width
let h = mat.Height
data1 <- data2
data2 <- tmp
-// Remove all 8-connected pixels with an area equal or greater than 'areaSize'.
-// Modify 'mat' in place.
+/// <summary>
+/// Remove all 8-connected pixels with an area equal or greater than 'areaSize'.
+/// Modify 'mat' in place.
+/// </summary>
let removeArea (mat: Matrix<byte>) (areaSize: int) =
let neighbors = [|
(-1, 0) // p2
for n in neighborhood do
data.[n.Y, n.X] <- 0uy
-let connectedComponents (img: Image<Gray, byte>) (startPoints: List<Point>) : List<Point> =
+let connectedComponents (img: Image<Gray, byte>) (startPoints: List<Point>) : Points =
let w = img.Width
let h = img.Height
then
pointToCheck.Push(p)
- List<Point>(pointChecked)
+ pointChecked
let drawLine (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: int) (y0: int) (x1: int) (y1: int) (thickness: int) =
img.Draw(LineSegment2D(Point(x0, y0), Point(x1, y1)), color, thickness);
let drawLineF (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: float) (y0: float) (x1: float) (y1: float) (thickness: int) =
img.Draw(LineSegment2DF(PointF(float32 x0, float32 y0), PointF(float32 x1, float32 y1)), color, thickness, CvEnum.LineType.AntiAlias);
-let drawEllipse (img: Image<'TColor, 'TDepth>) (e: Types.Ellipse) (color: 'TColor) (alpha: float) =
+let drawEllipse (img: Image<'TColor, 'TDepth>) (e: Ellipse) (color: 'TColor) (alpha: float) =
if alpha >= 1.0
then
- img.Draw(Ellipse(PointF(float32 e.Cx, float32 e.Cy), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
+ img.Draw(Emgu.CV.Structure.Ellipse(PointF(float32 e.Cx, float32 e.Cy), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
else
let windowPosX = e.Cx - e.A - 5.f
let gapX = windowPosX - (float32 (int windowPosX))
if roi = img.ROI // We do not display ellipses touching the edges (FIXME)
then
use i = new Image<'TColor, 'TDepth>(img.ROI.Size)
- i.Draw(Ellipse(PointF(float32 <| (e.A + 5.f + gapX) , float32 <| (e.A + 5.f + gapY)), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
+ i.Draw(Emgu.CV.Structure.Ellipse(PointF(float32 <| (e.A + 5.f + gapX) , float32 <| (e.A + 5.f + gapY)), SizeF(2.f * e.B, 2.f * e.A), e.Alpha / PI * 180.f), color, 1, CvEnum.LineType.AntiAlias)
CvInvoke.AddWeighted(img, 1.0, i, alpha, 0.0, img)
img.ROI <- Rectangle.Empty
-let drawEllipses (img: Image<'TColor, 'TDepth>) (ellipses: Types.Ellipse list) (color: 'TColor) (alpha: float) =
+let drawEllipses (img: Image<'TColor, 'TDepth>) (ellipses: Ellipse list) (color: 'TColor) (alpha: float) =
List.iter (fun e -> drawEllipse img e color alpha) ellipses
let rngCell = System.Random()
-let drawCell (img: Image<Bgr, byte>) (drawCellContent: bool) (c: Types.Cell) =
+let drawCell (img: Image<Bgr, byte>) (drawCellContent: bool) (c: Cell) =
if drawCellContent
then
let colorB = rngCell.Next(20, 70)
let crossColor, crossColor2 =
match c.cellClass with
- | Types.HealthyRBC -> Bgr(255., 0., 0.), Bgr(255., 255., 255.)
- | Types.InfectedRBC -> Bgr(0., 0., 255.), Bgr(120., 120., 255.)
- | Types.Peculiar -> Bgr(0., 0., 0.), Bgr(80., 80., 80.)
+ | HealthyRBC -> Bgr(255., 0., 0.), Bgr(255., 255., 255.)
+ | InfectedRBC -> Bgr(0., 0., 255.), Bgr(120., 120., 255.)
+ | Peculiar -> Bgr(0., 0., 0.), Bgr(80., 80., 80.)
drawLine img crossColor2 (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 2
drawLine img crossColor2 c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 2
drawLine img crossColor c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 1
-let drawCells (img: Image<Bgr, byte>) (drawCellContent: bool) (cells: Types.Cell list) =
+let drawCells (img: Image<Bgr, byte>) (drawCellContent: bool) (cells: Cell list) =
List.iter (fun c -> drawCell img drawCellContent c) cells
\ No newline at end of file