From: Greg Burri Date: Thu, 23 Apr 2015 14:28:56 +0000 (+0200) Subject: Beginning of the function 'DetectionOfWhiteCells'. X-Git-Url: https://git.euphorik.ch/?a=commitdiff_plain;h=c3e7da9d75b7a2d18efd669e54613e99c151e4dd;p=malaria.git Beginning of the function 'DetectionOfWhiteCells'. --- diff --git a/src/DetectionOfParasites.m b/src/DetectionOfParasites.m index cfe4ac2..fd94e0e 100644 --- a/src/DetectionOfParasites.m +++ b/src/DetectionOfParasites.m @@ -1,149 +1,136 @@ % Detection of parasites by means of granulometry and regional maxima. +function [THS, c] = DetectionOfParasites(imgRGB, gt) -%% Parameters -clear; + %% Extracting of H, S and V components + imgHSV = rgb2hsv(imgRGB); -imageFolder = '1305121398'; -imageNumber = '0001'; -scaleFactor = 0.6; + imgH = imgHSV(:, :, 1) * 255; + % We shift the hue to have the greatest value for the nuclei. + hueShiftValue = 195; % 100 + imgH = uint8(mod(255 - imgH + hueShiftValue, 256)); -% Load the image and its ground truth. -[imgRGB, gt] = loadImg(imageFolder, imageNumber); + imgS = uint8(imgHSV(:, :, 2) * 255); + % imgV = uint8(imgHSV(:, :, 3) * 255); % The value component isn't used. + % imgH = 255 - imgV; % We use the value component instead of the hue one (just for testing) -%% Extracting of H, S and V components + % p. 136: median filter to smooth the noise and + % area closing to enhance the bright objects and make flatter, darker and cleaner the image background. + imgFiltered{1} = mmareaclose(medfilt2(imgH, [5, 5]), 400); % Hue. + imgFiltered{2} = mmareaclose(medfilt2(imgS, [5, 5]), 400); % Saturation. -% Resample the image and its ground truth. -imgRGBResampled = imresize(imgRGB, scaleFactor); -gtResampled = imresize(gt, scaleFactor); + % Shading correction with a Top-hat transformation (p. 673). + % imgHFiltered = mmopenth(imgHFiltered, mmsedisk(80, '2D', 'OCTAGON')); + % imgSFiltered = mmopenth(imgSFiltered, mmsedisk(80, '2D', 'OCTAGON')); -imgHSV = rgb2hsv(imgRGBResampled); -imgH = imgHSV(:, :, 1) * 255; -% We shift the hue to have the greatest value for the nuclei. -hueShiftValue = 195; % 100 -imgH = uint8(mod(255 - imgH + hueShiftValue, 256)); + %% Granulometry + % We use the saturation component to find the red cells mean size. -imgS = uint8(imgHSV(:, :, 2) * 255); + redCellMaxSize = 42; % Radius [px]. + funVolume = @(m) sum(sum(m)); -% imgV = uint8(imgHSV(:, :, 3) * 255); % The value component isn't used. -% imgH = 255 - imgV; % We use the value component instead of the hue one (just for testing) + volImg = funVolume(imgFiltered{2}); -% p. 136: median filter to smooth the noise and -% area closing to enhance the bright objects and make flatter, darker and cleaner the image background. -imgFiltered{1} = mmareaclose(medfilt2(imgH, [5, 5]), 400); % Hue. -imgFiltered{2} = mmareaclose(medfilt2(imgS, [5, 5]), 400); % Saturation. + sizeDistribution = zeros(redCellMaxSize, 1); + parfor k = 1:redCellMaxSize + SE = mmsedisk(k, '2D', 'OCTAGON'); + imgOpened = mmopen(imgFiltered{2}, SE); + A = funVolume(imgOpened); + N = 1 - A / volImg; + sizeDistribution(k) = N; + end -% Shading correction with a Top-hat transformation (p. 673). -% imgHFiltered = mmopenth(imgHFiltered, mmsedisk(80, '2D', 'OCTAGON')); -% imgSFiltered = mmopenth(imgSFiltered, mmsedisk(80, '2D', 'OCTAGON')); + patternSpectrum = zeros(redCellMaxSize - 1, 1); + for k = 1:redCellMaxSize - 1 + patternSpectrum(k) = abs(sizeDistribution(k + 1) - sizeDistribution(k)); + end + % The paper choose the biggest red cell size among the possible red cell sizes. (FIXME) + [m, c] = max(patternSpectrum); + c = c + 3; + nucleiRadius = 5; % Find a way to extract this information from the pattern spectrum histogram. (FIXME) -%% Granulometry -% We use the saturation component to find the red cells mean size. + bar(patternSpectrum); -redCellMaxSize = 42; % Radius [px]. -funVolume = @(m) sum(sum(m)); -volImg = funVolume(imgFiltered{2}); + %% Regional extrema + % The size of the SE (c) must be equal to the size of red cells (see granulometry below). -sizeDistribution = zeros(redCellMaxSize, 1); -parfor k = 1:redCellMaxSize - SE = mmsedisk(k, '2D', 'OCTAGON'); - imgOpened = mmopen(imgFiltered{2}, SE); - A = funVolume(imgOpened); - N = 1 - A / volImg; - sizeDistribution(k) = N; -end - -patternSpectrum = zeros(redCellMaxSize - 1, 1); -for k = 1:redCellMaxSize - 1 - patternSpectrum(k) = abs(sizeDistribution(k + 1) - sizeDistribution(k)); -end - -% The paper choose the biggest red cell size among the possible red cell sizes. (FIXME) -[m, c] = max(patternSpectrum); -c = c + 3; -nucleiRadius = 5; % Find a way to extract this information from the pattern spectrum histogram. (FIXME) - -bar(patternSpectrum); + regionalMaxSE = mmsedisk(c, '2D', 'OCTAGON'); + parfor i = 1:2 + % This operation is very time consuming! + M{i} = mmregmax(imgFiltered{i}, regionalMaxSE); + end -%% Regional extrema -% The size of the SE (c) must be equal to the size of red cells (see granulometry below). - -regionalMaxSE = mmsedisk(c, '2D', 'OCTAGON'); - -parfor i = 1:2 - % This operation is very time consuming! - M{i} = mmregmax(imgFiltered{i}, regionalMaxSE); -end - -nucleiSE = mmsedisk(nucleiRadius, '2D', 'OCTAGON'); -MHS = mmdil(M{1}, nucleiSE) & mmdil(M{2}, nucleiSE); + nucleiSE = mmsedisk(nucleiRadius, '2D', 'OCTAGON'); + MHS = mmdil(M{1}, nucleiSE) & mmdil(M{2}, nucleiSE); -volumeMHS = funVolume(~MHS); -muH = funVolume(uint8(~MHS) .* imgFiltered{1}) / volumeMHS; -muS = funVolume(uint8(~MHS) .* imgFiltered{2}) / volumeMHS; + volumeMHS = funVolume(~MHS); + muH = funVolume(uint8(~MHS) .* imgFiltered{1}) / volumeMHS; + muS = funVolume(uint8(~MHS) .* imgFiltered{2}) / volumeMHS; -TH = im2bw(imgFiltered{1}, double(muH) / 255); -TS = im2bw(imgFiltered{2}, double(muS) / 255); -THS = TH & TS; + TH = im2bw(imgFiltered{1}, double(muH) / 255); + TS = im2bw(imgFiltered{2}, double(muS) / 255); + + THS = TH & TS; % Parasites of all type and WBC. -%% Output + %% Output -mkdir('../output') % Just in case the 'output' directory doesn't exist. + mkdir('../output') % Just in case the 'output' directory doesn't exist. -imwrite(imgRGBResampled, '../output/imgRGBResampled.png') -imwrite(gtResampled, '../output/gtResampled.png') + imwrite(imgRGB, '../output/imgRGB.png') + imwrite(gt, '../output/gt.png') -imwrite(imgH, '../output/imgH.png') -imwrite(imgS, '../output/imgS.png') + imwrite(imgH, '../output/imgH.png') + imwrite(imgS, '../output/imgS.png') -imwrite(M{1}, '../output/MH.png') -imwrite(imgFiltered{1}, '../output/imgHFiltered.png'); + imwrite(M{1}, '../output/MH.png') + imwrite(imgFiltered{1}, '../output/imgHFiltered.png'); -imwrite(M{2}, '../output/MS.png') -imwrite(imgFiltered{2}, '../output/imgSFiltered.png'); + imwrite(M{2}, '../output/MS.png') + imwrite(imgFiltered{2}, '../output/imgSFiltered.png'); -imwrite(MHS, '../output/MHS.png') + imwrite(MHS, '../output/MHS.png') -imwrite(THS, '../output/THS.png') + imwrite(THS, '../output/THS.png') -%% Display + %% Display -figure('Position', [100 100 1600 800]) -colormap(gray); - -subplot(2, 4, 1); -imagesc(imgRGBResampled); -title(['Original: ', imageFolder, '/', imageNumber]); - -subplot(2, 4, 2); -imagesc(imgFiltered{1}); -title('Hue component'); - -subplot(2, 4, 3); -imagesc(imgFiltered{2}); -title('Saturation component'); - -subplot(2, 4, 4); -imagesc(M{1}); -title('MH'); - -subplot(2, 4, 5); -imagesc(M{2}); -title('MS'); - -subplot(2, 4, 6); -imagesc(MHS); -title('MHS'); - -subplot(2, 4, 7); -imagesc(THS); -title('THS'); +% figure('Position', [100 100 1600 800]) +% colormap(gray); +% +% subplot(2, 4, 1); +% imagesc(imgRGB); +% title(['Original: ', imageFolder, '/', imageNumber]); +% +% subplot(2, 4, 2); +% imagesc(imgFiltered{1}); +% title('Hue component'); +% +% subplot(2, 4, 3); +% imagesc(imgFiltered{2}); +% title('Saturation component'); +% +% subplot(2, 4, 4); +% imagesc(M{1}); +% title('MH'); +% +% subplot(2, 4, 5); +% imagesc(M{2}); +% title('MS'); +% +% subplot(2, 4, 6); +% imagesc(MHS); +% title('MHS'); +% +% subplot(2, 4, 7); +% imagesc(THS); +% title('THS'); +end % print("-f1"’, "-dpng", "Toto.png") diff --git a/src/DetectionOfWhiteCells.m b/src/DetectionOfWhiteCells.m index e69de29..e32eb25 100644 --- a/src/DetectionOfWhiteCells.m +++ b/src/DetectionOfWhiteCells.m @@ -0,0 +1,3 @@ +function [] = DetectionOfParasites() + +end \ No newline at end of file