Add a logger assembly and split the main assembly in two : the UI and the parasitemia...
[master-thesis.git] / Parasitemia / Parasitemia / Ellipse.fs
diff --git a/Parasitemia/Parasitemia/Ellipse.fs b/Parasitemia/Parasitemia/Ellipse.fs
deleted file mode 100644 (file)
index ac3c041..0000000
+++ /dev/null
@@ -1,350 +0,0 @@
-module Ellipse
-
-open System
-open System.Collections.Generic
-open System.Drawing
-
-open MathNet.Numerics.LinearAlgebra
-
-open Emgu.CV
-open Emgu.CV.Structure
-
-open Utils
-open Config
-open MatchingEllipses
-open Const
-
-type private SearchExtremum = Minimum | Maximum
-
-let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) =
-    let gr = 1. / 1.6180339887498948482
-    let mutable a = xmin
-    let mutable b = xmax
-    let mutable c = b - gr * (b - a)
-    let mutable d = a + gr * (b - a)
-
-    for i in 1 .. nbIter do
-        let mutable fc = f c
-        let mutable fd = f d
-
-        if searchExtremum = Maximum
-        then
-            let tmp = fc
-            fc <- fd
-            fd <- tmp
-
-        if fc < fd
-        then
-            b <- d
-            d <- c
-            c <- b - gr * (b - a)
-        else
-            a <- c
-            c <- d
-            d <- a + gr * (b - a)
-
-    let x = (b + a) / 2.
-    x, f x
-
-// Ellipse.A is always equal or greater than Ellipse.B.
-// Ellipse.Alpha is between 0 and Pi.
-let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option =
-    let accuracy_extremum_search_1 = 10 // 3
-    let accuracy_extremum_search_2 = 10 // 4
-
-    // p3 as the referencial.
-    let p1x = p1x - p3x
-    let p1y = p1y - p3y
-
-    let p2x = p2x - p3x
-    let p2y = p2y - p3y
-
-    // Convert to polar coordinates.
-    let alpha1 = atan m1
-    let alpha2 = atan m2
-
-    let r1 = sqrt (p1x ** 2. + p1y ** 2.)
-    let theta1 = atan2 p1y p1x
-
-    let r2 = sqrt (p2x ** 2. + p2y ** 2.)
-    let theta2 = atan2 p2y p2x
-
-    let valid =
-        4. * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) *
-        sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) +
-        r1 * r2 * sin (alpha1 - alpha2) ** 2. * sin (theta1 - theta2) ** 2. < 0.
-
-    if valid
-    then
-        let r theta =
-            (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) /
-            (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.)
-
-        let rabs = r >> abs
-
-        // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval.
-        let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0. Math.PI Maximum
-        let rTan = r thetaTan
-
-        let PTanx = rTan * cos thetaTan
-        let PTany = rTan * sin thetaTan
-
-        let d1a = tan alpha1
-        let d1b = -d1a * p1x + p1y
-
-        let d2a = tan alpha2
-        let d2b = -d2a * p2x + p2y
-
-        let d3a = -1. / tan thetaTan
-        let d3b = -d3a * PTanx + PTany
-
-        let Ux = -(d1b - d2b) / (d1a - d2a)
-        let Uy = -(d2a * d1b - d1a * d2b) / (d1a - d2a)
-
-        let Vx = -(d1b - d3b) / (d1a - d3a)
-        let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a)
-
-        let Wx = p1x + (p2x - p1x) / 2.
-        let Wy = p1y + (p2y - p1y) / 2.
-
-        let Zx = p1x + (PTanx - p1x) / 2.
-        let Zy = p1y + (PTany - p1y) / 2.
-
-        let va = -(-Vy + Zy) / (Vx - Zx)
-        let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx)
-
-        let ua = -(-Uy + Wy) / (Ux - Wx)
-        let ub = -(Wx * Uy - Ux * Wy) / (Ux - Wx)
-
-        let cx = -(vb - ub) / (va - ua)
-        let cy = -(ua * vb - va * ub) / (va - ua)
-
-        let rc = sqrt (cx ** 2. + cy ** 2.)
-        let psi = atan2 cy cx
-
-        let rellipse theta =
-            sqrt (
-                rc ** 2. + (r1 ** 2. * r2 ** 2. * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2. * sin (theta1 - theta2) ** 2.) /
-                (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) ** 2. -
-                (2. * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) /
-                (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.))
-
-        // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval.
-        let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Maximum // Pi/2 and not pi because the period is Pi.
-        let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Minimum
-
-        let rr1e = r r1eTheta
-        let r1ex = rr1e * cos r1eTheta
-        let r1ey = rr1e * sin r1eTheta
-        let mutable alpha = atan ((r1ey - cy) / (r1ex - cx))
-        if alpha < 0.
-        then
-           alpha <- alpha + Math.PI
-
-        // Ride off the p3 referential.
-        let cx = cx + p3x
-        let cy = cy + p3y
-
-        Some (Types.Ellipse(float32 cx, float32 cy, float32 r1e, float32 r2e, float32 alpha))
-    else
-        None
-
-let ellipse2 (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option =
-    let p0 = pointFromTwoLines (Types.Line(float32 m1, float32 (p1y - m1 * p1x))) (Types.Line(float32 m2, float32(p2y - m2 * p2x)))
-    let p0x, p0y = float p0.X, float p0.Y
-
-    let s = matrix [[ 1.;   0.;  0.  ]
-                    [ 0.;   0.; -0.5 ]
-                    [ 0.; -0.5;  0.  ]]
-
-    let v0 = matrix [[ 1.; p0x; p0y ]]
-    let v1 = matrix [[ 1.; p1x; p1y ]]
-    let v2 = matrix [[ 1.; p2x; p2y ]]
-    let v3 = matrix [[ 1.; p3x; p3y ]]
-
-    let p = (v3.Stack(v1).Stack(v2).Determinant() * v0).Stack(v0.Stack(v3).Stack(v2).Determinant() * v1).Stack(v0.Stack(v1).Stack(v3).Determinant() * v2).Transpose()
-    let conicMat = p * s.Inverse() * p.Transpose()
-    let a = conicMat.[0, 0]
-    let b = conicMat.[0, 1]
-    let c = conicMat.[1, 1]
-    let d = conicMat.[0, 2]
-    let e = conicMat.[1, 2]
-    let f = conicMat.[2, 2]
-
-    // Center.
-    let cx = b / a
-    let cy = d / a
-
-    let at = c * f - e ** 2. + (e * d - b * f) * cx + (b * e - c * d) * cy
-    if at = 0.
-    then
-        None
-    else
-        let q = (-1. / at) * (matrix [[ a * f - d ** 2.0; b * d - a * e ]; [ b * d - a * e; a * c - b ** 2.0 ]])
-        let eigen = q.Evd()
-        let eigenValues = eigen.EigenValues
-        let lambda = eigenValues.[1].Real
-        let mu = eigenValues.[0].Real
-
-        if lambda <= 0. || mu <= 0.
-        then
-            None
-        else
-            let r1, r2 = 1. / (sqrt lambda), 1. / (sqrt mu)
-
-            let eigenVectors = eigen.EigenVectors
-            let v_a = eigenVectors.[0, 0]
-            let v_b = eigenVectors.[1, 0] // [0, 1]
-
-            // Angle against the longest axis.
-            let phi = (if r2 > r1 then atan (v_b / v_a) else atan (v_a / v_b))
-
-            let phi' = if phi < 0. then phi + Math.PI else phi
-            let majorAxis, minorAxis = if r1 > r2 then r1, r2 else r2, r1
-
-            Some (Types.Ellipse(float32 cx, float32 cy, float32 majorAxis, float32 minorAxis, float32 phi'))
-
-
-let private vectorRotation (p1x: float32) (p1y: float32) (v1x: float32) (v1y: float32) (px: float32) (py: float32) : float32 =
-    let mutable rotation = 1.f
-    if p1y > py
-    then
-        if v1x > 0.f
-        then
-            rotation <- -1.f
-    elif p1y < py
-    then
-        if v1x < 0.f
-        then
-            rotation <- -1.f
-    elif p1x > px
-    then
-        if v1y < 0.f
-        then
-            rotation <- -1.f
-    elif p1x < px
-    then
-        if v1y > 0.f
-        then
-            rotation <- -1.f
-    rotation
-
-let private areVectorsValid (p1x: float32) (p1y: float32) (p2x: float32) (p2y: float32) (v1x: float32) (v1y: float32) (v2x: float32) (v2y: float32) : (float32 * float32) option =
-    let m1 = -v1x / v1y
-    let m2 = -v2x / v2y
-
-    let b1 = -m1 * p1x + p1y
-    let b2 = -m2 * p2x + p2y
-    let px = -((b1 - b2) / (m1 - m2))
-    let py = -((m2 * b1 - m1 * b2) / (m1 - m2))
-
-    let rot1 = vectorRotation p1x p1y v1x v1y px py
-    let rot2 = vectorRotation p2x p2y v2x v2y px py
-
-    if rot1 = rot2
-    then
-        None
-    else
-        let alpha1 = atan2 (p1y - py) (p1x - px)
-        let alpha2 = atan2 (p2y - py) (p2x - px)
-
-        let alpha1' = if alpha1 < 0.f then 2.f * PI + alpha1 else alpha1
-        let alpha2' = if alpha2 < 0.f then 2.f * PI + alpha2 else alpha2
-
-        let diff = rot1 * alpha1' + rot2 * alpha2'
-
-        if diff > PI || (diff < 0.f && diff > -PI)
-        then
-            None
-        else
-        Some (m1, m2)
-
-
-let find (edges: Matrix<byte>)
-         (xGradient: Image<Gray, float32>)
-         (yGradient: Image<Gray, float32>)
-         (config: Config) : MatchingEllipses =
-
-    let r1, r2 = config.RBCRadius.Min, config.RBCRadius.Max
-    let incrementWindowDivisor = 4.f
-
-    // We choose a window size for which the biggest ellipse can always be fitted in.
-    let windowSize = roundInt (2.f * r2 / (incrementWindowDivisor - 1.f) * incrementWindowDivisor)
-    let factorNbPick = config.Parameters.factorNbPick
-
-    let increment = windowSize / (int incrementWindowDivisor)
-
-    let radiusTolerance = (r2 - r1) * 0.2f
-
-    let squaredMinimumDistance = (float r2 / 1.5) ** 2.
-    let inline squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2. + (y1 - y2) ** 2.
-
-    let h = edges.Height
-    let w = edges.Width
-    let h_f = float32 h
-    let w_f = float32 w
-
-    let mutable last_i, last_j = Int32.MaxValue, Int32.MaxValue
-
-    let currentElements = List<Point>()
-
-    let edgesData = edges.Data
-    let xDirData = xGradient.Data
-    let yDirData = yGradient.Data
-
-    let rng = Random(42)
-
-    let ellipses = MatchingEllipses(config.RBCRadius.Pixel)
-
-    for window_i in -windowSize + increment .. increment .. h - increment do
-        for window_j in -windowSize + increment .. increment .. w - increment do
-
-            let window_i_begin = if window_i < 0 then 0 else window_i
-            let window_i_end = if window_i + windowSize - 1 >= h then h - 1 else window_i + windowSize - 1
-            let window_j_begin = if window_j < 0 then 0 else window_j
-            let window_j_end = if window_j + windowSize - 1 >= w then w - 1 else window_j + windowSize - 1
-
-            // Remove old elements.
-            let indexFirstElement = currentElements.FindIndex(fun p -> p.X >= window_j_begin)
-            if indexFirstElement > 0
-            then currentElements.RemoveRange(0, indexFirstElement)
-
-            // Add the new elements.
-            let newElemsBegin_j = window_j + windowSize - increment
-            let newElemsEnd_j = window_j + windowSize - 1
-            for j in (if newElemsBegin_j < 0 then 0 else newElemsBegin_j) .. (if newElemsEnd_j >= w then w - 1 else newElemsEnd_j) do
-                for i in window_i_begin .. window_i_end do
-                    if edgesData.[i, j] = 1uy
-                    then currentElements.Add(Point(j, i))
-
-            if currentElements.Count >= 10
-            then
-                let mutable nbOfPicks = (float currentElements.Count) * factorNbPick |> int
-                while nbOfPicks > 0 do
-                    let p1 = currentElements.[rng.Next(currentElements.Count)]
-                    let p2 = currentElements.[rng.Next(currentElements.Count)]
-                    let p3 = currentElements.[rng.Next(currentElements.Count)]
-                    if p1 <> p2 && p1 <> p3 && p2 <> p3
-                    then
-                        nbOfPicks <- nbOfPicks - 1
-                        let p1yf, p1xf = float p1.Y, float p1.X
-                        let p2yf, p2xf = float p2.Y, float p2.X
-                        let p3yf, p3xf = float p3.Y, float p3.X
-                        if squaredDistance p1xf p1yf p2xf p2yf >= squaredMinimumDistance &&
-                           squaredDistance p1xf p1yf p3xf p3yf >= squaredMinimumDistance &&
-                           squaredDistance p2xf p2yf p3xf p3yf >= squaredMinimumDistance
-                        then
-                            match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X, 0] -yDirData.[p1.Y, p1.X, 0] -xDirData.[p2.Y, p2.X, 0] -yDirData.[p2.Y, p2.X, 0] with
-                            | Some (m1, m2) ->
-                                //let pouet = ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf
-                                match ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with
-                                | Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f &&
-                                              e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance ->
-                                     ellipses.Add e
-                                | _ -> ()
-                            | _ -> ()
-
-        currentElements.Clear()
-
-    ellipses
-