X-Git-Url: http://git.euphorik.ch/?a=blobdiff_plain;f=Parasitemia%2FParasitemia%2FEllipse.fs;fp=Parasitemia%2FParasitemia%2FEllipse.fs;h=62273b579f25b7ce51eb08e9956fefa2a10a70c3;hb=ba64921fb9a0c36cd8cf802cbf1b2c0f79bc25f6;hp=0000000000000000000000000000000000000000;hpb=0ff8fb82457bd5a858b2218ab07f69c81323537e;p=master-thesis.git diff --git a/Parasitemia/Parasitemia/Ellipse.fs b/Parasitemia/Parasitemia/Ellipse.fs new file mode 100644 index 0000000..62273b5 --- /dev/null +++ b/Parasitemia/Parasitemia/Ellipse.fs @@ -0,0 +1,269 @@ +module Ellipse + +open System +open System.Collections.Generic + +open Emgu.CV +open Emgu.CV.Structure + +open Utils +open MatchingEllipses + + +type private SearchExtremum = Minimum | Maximum + +let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) = + let gr = 1.0 / 1.6180339887498948482 + let mutable a = xmin + let mutable b = xmax + let mutable c = b - gr * (b - a) + let mutable d = a + gr * (b - a) + + for i in 1 .. nbIter do + let mutable fc = f c + let mutable fd = f d + + if searchExtremum = Maximum + then + let tmp = fc + fc <- fd + fd <- tmp + + if fc < fd + then + b <- d; + d <- c; + c <- b - gr * (b - a); + else + a <- c; + c <- d; + d <- a + gr * (b - a); + + let x = (b + a) / 2.0 + x, f x + +let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = + let accuracy_extremum_search_1 = 4; + let accuracy_extremum_search_2 = 3; + + // p3 as the referencial. + let p1x = p1x - p3x + let p1y = p1y - p3y + + let p2x = p2x - p3x + let p2y = p2y - p3y + + // Convert to polar coordinates. + let alpha1 = atan m1 + let alpha2 = atan m2 + + let r1 = sqrt (p1x**2.0 + p1y**2.0) + let theta1 = atan2 p1y p1x + + let r2 = sqrt (p2x**2.0 + p2y**2.0) + let theta2 = atan2 p2y p2x + + let valid = + 4.0 * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * + sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) + + r1 * r2 * sin (alpha1 - alpha2) **2.0 * sin (theta1 - theta2) **2.0 < 0.0 + + if valid + then + let r theta = + (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2))**2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2)**2.0) + + let rabs = r >> abs + + // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. + let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0.0 Math.PI Maximum + let rTan = r thetaTan + + let PTanx = rTan * cos thetaTan + let PTany = rTan * sin thetaTan + + let d1a = tan alpha1 + let d1b = -d1a * p1x + p1y + + let d2a = tan alpha2 + let d2b = -d2a * p2x + p2y + + let d3a = -1.0 / tan thetaTan + let d3b = -d3a * PTanx + PTany + + let Ux = -(d1b - d2b) / (d1a - d2a) + let Uy = -(d2a * d1b - d1a * d2b) / (d1a - d2a) + + let Vx = -(d1b - d3b) / (d1a - d3a) + let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a) + + let Wx = p1x + (p2x - p1x) / 2.0 + let Wy = p1y + (p2y - p1y) / 2.0 + + let Zx = p1x + (PTanx - p1x) / 2.0 + let Zy = p1y + (PTany - p1y) / 2.0 + + let va = -(-Vy + Zy) / (Vx - Zx) + let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx) + + let ua = -(-Uy + Wy) / (Ux - Wx) + let ub = -(Wx * Uy - Ux * Wy) / (Ux - Wx) + + let cx = -(vb - ub) / (va - ua) + let cy = -(ua * vb - va * ub) / (va - ua) + + let rc = sqrt (cx**2.0 + cy**2.0) + let psi = atan2 cy cx + + let rellipse theta = + sqrt ( + rc**2.0 + (r1**2.0 * r2**2.0 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2))**2.0 * sin (theta1 - theta2)**2.0) / + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2))**2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2)**2.0)**2.0 - + (2.0 * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2))**2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2)**2.0)) + + // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. + let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0.0 (Math.PI / 2.0) Maximum // Pi/2 and not pi because the period is Pi. + let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0.0 (Math.PI / 2.0) Minimum + + let rr1e = r r1eTheta + let r1ex = rr1e * cos r1eTheta + let r1ey = rr1e * sin r1eTheta + let mutable alpha = atan ((r1ey - cy) / (r1ex - cx)) + if alpha < 0.0 + then + alpha <- alpha + Math.PI + + // Ride off the p3 referential. + let cx = cx + p3x + let cy = cy + p3y + + Some { cx = cx; cy = cy; a = r1e; b = r2e; alpha = alpha } + else + None + + +let private vectorRotation (p1x: float) (p1y: float) (v1x: float) (v1y: float) (px: float) (py: float) : float = + let mutable rotation = 1.0 + if p1y > py + then + if v1x > 0.0 + then + rotation <- -1.0 + elif p1y < py + then + if v1x < 0.0 + then + rotation <- -1.0 + elif p1x > px + then + if v1y < 0.0 + then + rotation <- -1.0 + elif p1x < px + then + if v1y > 0.0 + then + rotation <- -1.0 + rotation + + +let private areVectorsValid (p1x: float) (p1y: float) (p2x: float) (p2y: float) (v1x: float) (v1y: float) (v2x: float) (v2y: float) : (float * float) option = + let m1 = -v1x / v1y + let m2 = -v2x / v2y + + let b1 = -m1 * p1x + p1y + let b2 = -m2 * p2x + p2y + let px = -((b1 - b2)/(m1 - m2)) + let py = -((m2 * b1 - m1 * b2)/(m1 - m2)) + + let rot1 = vectorRotation p1x p1y v1x v1y px py + let rot2 = vectorRotation p2x p2y v2x v2y px py + + if rot1 = rot2 || rot1 * atan2 (p1y - py) (p1x - px) + rot2 * atan2 (p2y - py) (p2x - px) <= 0.0 + then + None + else + Some (m1, m2) + + +let find (edges: Matrix) + (xDir: Image) + (yDir: Image) + (radiusRange: float * float) + (windowSize: int) + (factorNbPick: float) : Types.Ellipse list = + + let increment = windowSize / 4; + + let r1, r2 = radiusRange + let radiusTolerance = (r2 - r1) * 0.2 + + let minimumDistance = (r2 / 1.5) ** 2.0; + let squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2.0 + (y1 - y2) ** 2.0; + + let h = edges.Height + let w = edges.Width + + let mutable last_i, last_j = Int32.MaxValue, Int32.MaxValue + + let currentElements = List<(int * int)>() + + let edgesData = edges.Data + let xDirData = xDir.Data + let yDirData = yDir.Data + + let rng = Random() + + let ellipses = MatchingEllipses () + + for window_i in -windowSize + increment .. increment .. h - increment do + for window_j in -windowSize + increment .. increment .. w - increment do + + let window_i_begin = if window_i < 0 then 0 else window_i + let window_i_end = if window_i + windowSize - 1 >= h then h - 1 else window_i + windowSize - 1 + let window_j_begin = if window_j < 0 then 0 else window_j + let window_j_end = if window_j + windowSize - 1 >= w then w - 1 else window_j + windowSize - 1 + + // Remove old elements. + let indexFirstElement = currentElements.FindIndex(fun (_, pj) -> pj >= window_j) + if indexFirstElement > 0 + then currentElements.RemoveRange(0, indexFirstElement) + + // Add the new elements. + for j in window_j + windowSize - increment .. window_j + windowSize - 1 do + for i in window_i_begin .. window_i_end do + if j >= 0 && j < w && edgesData.[i, j] = 1uy + then currentElements.Add((i, j)) + + if currentElements.Count >= 10 + then + let mutable nbOfPicks = (float currentElements.Count) * factorNbPick |> int + while nbOfPicks > 0 do + let (p1y, p1x) as p1 = currentElements.[rng.Next(currentElements.Count)] + let (p2y, p2x) as p2 = currentElements.[rng.Next(currentElements.Count)] + let (p3y, p3x) as p3 = currentElements.[rng.Next(currentElements.Count)] + if p1 <> p2 && p1 <> p3 && p2 <> p3 + then + nbOfPicks <- nbOfPicks - 1 + let p1yf, p1xf = float p1y, float p1x + let p2yf, p2xf = float p2y, float p2x + let p3yf, p3xf = float p3y, float p3x + if squaredDistance p1xf p1yf p2xf p2yf >= minimumDistance && + squaredDistance p1xf p1yf p3xf p3yf >= minimumDistance && + squaredDistance p2xf p2yf p3xf p3yf >= minimumDistance + then + match areVectorsValid p1xf p1yf p2xf p2yf -xDirData.[p1y, p1x, 0] -yDirData.[p1y, p1x, 0] -xDirData.[p2y, p2x, 0] -yDirData.[p2y, p2x, 0] with + | Some (m1, m2) -> + match ellipse p1xf p1yf m1 p2xf p2yf m2 p3xf p3yf with + | Some e when e.cx > 0.0 && e.cx < (float w) - 1.0 && e.cy > 0.0 && e.cy < (float h) - 1.0 && + e.a >= r1 - radiusTolerance && e.a <= r2 + radiusTolerance && e.b >= r1 - radiusTolerance && e.b <= r2 + radiusTolerance -> + ellipses.Add e + | _ -> () + | _ -> () + + currentElements.Clear() + + ellipses.Ellipses +