X-Git-Url: http://git.euphorik.ch/?a=blobdiff_plain;f=Parasitemia%2FParasitemia%2FEllipse.fs;fp=Parasitemia%2FParasitemia%2FEllipse.fs;h=0000000000000000000000000000000000000000;hb=4bfa3cbdc6145e6944f02e24829ab2ef3a851ac1;hp=ac3c041a9d2a7fb5bf3b5769ca65198ea20d22f4;hpb=48ecdfc43001c444eff6ad442986049384674af2;p=master-thesis.git diff --git a/Parasitemia/Parasitemia/Ellipse.fs b/Parasitemia/Parasitemia/Ellipse.fs deleted file mode 100644 index ac3c041..0000000 --- a/Parasitemia/Parasitemia/Ellipse.fs +++ /dev/null @@ -1,350 +0,0 @@ -module Ellipse - -open System -open System.Collections.Generic -open System.Drawing - -open MathNet.Numerics.LinearAlgebra - -open Emgu.CV -open Emgu.CV.Structure - -open Utils -open Config -open MatchingEllipses -open Const - -type private SearchExtremum = Minimum | Maximum - -let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) = - let gr = 1. / 1.6180339887498948482 - let mutable a = xmin - let mutable b = xmax - let mutable c = b - gr * (b - a) - let mutable d = a + gr * (b - a) - - for i in 1 .. nbIter do - let mutable fc = f c - let mutable fd = f d - - if searchExtremum = Maximum - then - let tmp = fc - fc <- fd - fd <- tmp - - if fc < fd - then - b <- d - d <- c - c <- b - gr * (b - a) - else - a <- c - c <- d - d <- a + gr * (b - a) - - let x = (b + a) / 2. - x, f x - -// Ellipse.A is always equal or greater than Ellipse.B. -// Ellipse.Alpha is between 0 and Pi. -let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = - let accuracy_extremum_search_1 = 10 // 3 - let accuracy_extremum_search_2 = 10 // 4 - - // p3 as the referencial. - let p1x = p1x - p3x - let p1y = p1y - p3y - - let p2x = p2x - p3x - let p2y = p2y - p3y - - // Convert to polar coordinates. - let alpha1 = atan m1 - let alpha2 = atan m2 - - let r1 = sqrt (p1x ** 2. + p1y ** 2.) - let theta1 = atan2 p1y p1x - - let r2 = sqrt (p2x ** 2. + p2y ** 2.) - let theta2 = atan2 p2y p2x - - let valid = - 4. * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * - sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) + - r1 * r2 * sin (alpha1 - alpha2) ** 2. * sin (theta1 - theta2) ** 2. < 0. - - if valid - then - let r theta = - (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) - - let rabs = r >> abs - - // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0. Math.PI Maximum - let rTan = r thetaTan - - let PTanx = rTan * cos thetaTan - let PTany = rTan * sin thetaTan - - let d1a = tan alpha1 - let d1b = -d1a * p1x + p1y - - let d2a = tan alpha2 - let d2b = -d2a * p2x + p2y - - let d3a = -1. / tan thetaTan - let d3b = -d3a * PTanx + PTany - - let Ux = -(d1b - d2b) / (d1a - d2a) - let Uy = -(d2a * d1b - d1a * d2b) / (d1a - d2a) - - let Vx = -(d1b - d3b) / (d1a - d3a) - let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a) - - let Wx = p1x + (p2x - p1x) / 2. - let Wy = p1y + (p2y - p1y) / 2. - - let Zx = p1x + (PTanx - p1x) / 2. - let Zy = p1y + (PTany - p1y) / 2. - - let va = -(-Vy + Zy) / (Vx - Zx) - let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx) - - let ua = -(-Uy + Wy) / (Ux - Wx) - let ub = -(Wx * Uy - Ux * Wy) / (Ux - Wx) - - let cx = -(vb - ub) / (va - ua) - let cy = -(ua * vb - va * ub) / (va - ua) - - let rc = sqrt (cx ** 2. + cy ** 2.) - let psi = atan2 cy cx - - let rellipse theta = - sqrt ( - rc ** 2. + (r1 ** 2. * r2 ** 2. * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2. * sin (theta1 - theta2) ** 2.) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) ** 2. - - (2. * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.)) - - // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Maximum // Pi/2 and not pi because the period is Pi. - let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Minimum - - let rr1e = r r1eTheta - let r1ex = rr1e * cos r1eTheta - let r1ey = rr1e * sin r1eTheta - let mutable alpha = atan ((r1ey - cy) / (r1ex - cx)) - if alpha < 0. - then - alpha <- alpha + Math.PI - - // Ride off the p3 referential. - let cx = cx + p3x - let cy = cy + p3y - - Some (Types.Ellipse(float32 cx, float32 cy, float32 r1e, float32 r2e, float32 alpha)) - else - None - -let ellipse2 (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = - let p0 = pointFromTwoLines (Types.Line(float32 m1, float32 (p1y - m1 * p1x))) (Types.Line(float32 m2, float32(p2y - m2 * p2x))) - let p0x, p0y = float p0.X, float p0.Y - - let s = matrix [[ 1.; 0.; 0. ] - [ 0.; 0.; -0.5 ] - [ 0.; -0.5; 0. ]] - - let v0 = matrix [[ 1.; p0x; p0y ]] - let v1 = matrix [[ 1.; p1x; p1y ]] - let v2 = matrix [[ 1.; p2x; p2y ]] - let v3 = matrix [[ 1.; p3x; p3y ]] - - let p = (v3.Stack(v1).Stack(v2).Determinant() * v0).Stack(v0.Stack(v3).Stack(v2).Determinant() * v1).Stack(v0.Stack(v1).Stack(v3).Determinant() * v2).Transpose() - let conicMat = p * s.Inverse() * p.Transpose() - let a = conicMat.[0, 0] - let b = conicMat.[0, 1] - let c = conicMat.[1, 1] - let d = conicMat.[0, 2] - let e = conicMat.[1, 2] - let f = conicMat.[2, 2] - - // Center. - let cx = b / a - let cy = d / a - - let at = c * f - e ** 2. + (e * d - b * f) * cx + (b * e - c * d) * cy - if at = 0. - then - None - else - let q = (-1. / at) * (matrix [[ a * f - d ** 2.0; b * d - a * e ]; [ b * d - a * e; a * c - b ** 2.0 ]]) - let eigen = q.Evd() - let eigenValues = eigen.EigenValues - let lambda = eigenValues.[1].Real - let mu = eigenValues.[0].Real - - if lambda <= 0. || mu <= 0. - then - None - else - let r1, r2 = 1. / (sqrt lambda), 1. / (sqrt mu) - - let eigenVectors = eigen.EigenVectors - let v_a = eigenVectors.[0, 0] - let v_b = eigenVectors.[1, 0] // [0, 1] - - // Angle against the longest axis. - let phi = (if r2 > r1 then atan (v_b / v_a) else atan (v_a / v_b)) - - let phi' = if phi < 0. then phi + Math.PI else phi - let majorAxis, minorAxis = if r1 > r2 then r1, r2 else r2, r1 - - Some (Types.Ellipse(float32 cx, float32 cy, float32 majorAxis, float32 minorAxis, float32 phi')) - - -let private vectorRotation (p1x: float32) (p1y: float32) (v1x: float32) (v1y: float32) (px: float32) (py: float32) : float32 = - let mutable rotation = 1.f - if p1y > py - then - if v1x > 0.f - then - rotation <- -1.f - elif p1y < py - then - if v1x < 0.f - then - rotation <- -1.f - elif p1x > px - then - if v1y < 0.f - then - rotation <- -1.f - elif p1x < px - then - if v1y > 0.f - then - rotation <- -1.f - rotation - -let private areVectorsValid (p1x: float32) (p1y: float32) (p2x: float32) (p2y: float32) (v1x: float32) (v1y: float32) (v2x: float32) (v2y: float32) : (float32 * float32) option = - let m1 = -v1x / v1y - let m2 = -v2x / v2y - - let b1 = -m1 * p1x + p1y - let b2 = -m2 * p2x + p2y - let px = -((b1 - b2) / (m1 - m2)) - let py = -((m2 * b1 - m1 * b2) / (m1 - m2)) - - let rot1 = vectorRotation p1x p1y v1x v1y px py - let rot2 = vectorRotation p2x p2y v2x v2y px py - - if rot1 = rot2 - then - None - else - let alpha1 = atan2 (p1y - py) (p1x - px) - let alpha2 = atan2 (p2y - py) (p2x - px) - - let alpha1' = if alpha1 < 0.f then 2.f * PI + alpha1 else alpha1 - let alpha2' = if alpha2 < 0.f then 2.f * PI + alpha2 else alpha2 - - let diff = rot1 * alpha1' + rot2 * alpha2' - - if diff > PI || (diff < 0.f && diff > -PI) - then - None - else - Some (m1, m2) - - -let find (edges: Matrix) - (xGradient: Image) - (yGradient: Image) - (config: Config) : MatchingEllipses = - - let r1, r2 = config.RBCRadius.Min, config.RBCRadius.Max - let incrementWindowDivisor = 4.f - - // We choose a window size for which the biggest ellipse can always be fitted in. - let windowSize = roundInt (2.f * r2 / (incrementWindowDivisor - 1.f) * incrementWindowDivisor) - let factorNbPick = config.Parameters.factorNbPick - - let increment = windowSize / (int incrementWindowDivisor) - - let radiusTolerance = (r2 - r1) * 0.2f - - let squaredMinimumDistance = (float r2 / 1.5) ** 2. - let inline squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2. + (y1 - y2) ** 2. - - let h = edges.Height - let w = edges.Width - let h_f = float32 h - let w_f = float32 w - - let mutable last_i, last_j = Int32.MaxValue, Int32.MaxValue - - let currentElements = List() - - let edgesData = edges.Data - let xDirData = xGradient.Data - let yDirData = yGradient.Data - - let rng = Random(42) - - let ellipses = MatchingEllipses(config.RBCRadius.Pixel) - - for window_i in -windowSize + increment .. increment .. h - increment do - for window_j in -windowSize + increment .. increment .. w - increment do - - let window_i_begin = if window_i < 0 then 0 else window_i - let window_i_end = if window_i + windowSize - 1 >= h then h - 1 else window_i + windowSize - 1 - let window_j_begin = if window_j < 0 then 0 else window_j - let window_j_end = if window_j + windowSize - 1 >= w then w - 1 else window_j + windowSize - 1 - - // Remove old elements. - let indexFirstElement = currentElements.FindIndex(fun p -> p.X >= window_j_begin) - if indexFirstElement > 0 - then currentElements.RemoveRange(0, indexFirstElement) - - // Add the new elements. - let newElemsBegin_j = window_j + windowSize - increment - let newElemsEnd_j = window_j + windowSize - 1 - for j in (if newElemsBegin_j < 0 then 0 else newElemsBegin_j) .. (if newElemsEnd_j >= w then w - 1 else newElemsEnd_j) do - for i in window_i_begin .. window_i_end do - if edgesData.[i, j] = 1uy - then currentElements.Add(Point(j, i)) - - if currentElements.Count >= 10 - then - let mutable nbOfPicks = (float currentElements.Count) * factorNbPick |> int - while nbOfPicks > 0 do - let p1 = currentElements.[rng.Next(currentElements.Count)] - let p2 = currentElements.[rng.Next(currentElements.Count)] - let p3 = currentElements.[rng.Next(currentElements.Count)] - if p1 <> p2 && p1 <> p3 && p2 <> p3 - then - nbOfPicks <- nbOfPicks - 1 - let p1yf, p1xf = float p1.Y, float p1.X - let p2yf, p2xf = float p2.Y, float p2.X - let p3yf, p3xf = float p3.Y, float p3.X - if squaredDistance p1xf p1yf p2xf p2yf >= squaredMinimumDistance && - squaredDistance p1xf p1yf p3xf p3yf >= squaredMinimumDistance && - squaredDistance p2xf p2yf p3xf p3yf >= squaredMinimumDistance - then - match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X, 0] -yDirData.[p1.Y, p1.X, 0] -xDirData.[p2.Y, p2.X, 0] -yDirData.[p2.Y, p2.X, 0] with - | Some (m1, m2) -> - //let pouet = ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf - match ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with - | Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f && - e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance -> - ellipses.Add e - | _ -> () - | _ -> () - - currentElements.Clear() - - ellipses -