1
module ParasitemiaCore.KMedians
3 open System.Collections.Generic
11 fg
: Image<Gray, byte
>
14 d_fg
: Image<Gray, float32
> // Euclidean distances of the foreground to median_fg.
17 let kmedians (img
: Image<Gray, float32
>) : Result =
22 let min = ref [| 0.0
|]
23 let minLocation = ref <| [| Point() |]
24 let max = ref [| 0.0
|]
25 let maxLocation = ref <| [| Point() |]
26 img
.MinMax(min, max, minLocation, maxLocation)
28 let mutable median_bg = (!max).[0] - ((!max).[0] - (!min).[0]) / 4.0
29 let mutable median_fg = (!min).[0] + ((!max).[0] - (!min).[0]) / 4.0
30 use mutable d_bg = new Image<Gray, float32
>(img
.Size)
31 let mutable d_fg = new Image<Gray, float32
>(img
.Size)
32 let mutable fg = new Image<Gray, byte
>(img
.Size)
34 for i
= 1 to nbIteration do
35 d_bg <- img
.AbsDiff(Gray(median_bg))
36 d_fg <- img
.AbsDiff(Gray(median_fg))
38 CvInvoke.Compare(d_fg, d_bg, fg, CvEnum.CmpType.LessThan)
40 let bg_values = List<float>()
41 let fg_values = List<float>()
45 if fg.Data.[i
, j
, 0] > 0uy then
46 fg_values.Add(float img.Data.[i
, j
, 0])
48 bg_values.Add(float img.Data.[i
, j
, 0])
50 median_bg <- MathNet.Numerics.Statistics.Statistics.Median(bg_values)
51 median_fg <- MathNet.Numerics.Statistics.Statistics.Median(fg_values)
53 { fg = fg; median_bg = median_bg; median_fg = median_fg; d_fg = d_fg }