X-Git-Url: http://git.euphorik.ch/?p=master-thesis.git;a=blobdiff_plain;f=Parasitemia%2FParasitemia%2FEllipse.fs;h=be359401a53131eeaeb2ec2d328935bbf26b47d7;hp=73771bee58873a88448b4ad471a3a6288f44d93f;hb=05be8164d308447b916544ae3ce4211500dfd8da;hpb=bef2e9f0bf1bba21d4c988fdf654c2dc303ec34a diff --git a/Parasitemia/Parasitemia/Ellipse.fs b/Parasitemia/Parasitemia/Ellipse.fs index 73771be..be35940 100644 --- a/Parasitemia/Parasitemia/Ellipse.fs +++ b/Parasitemia/Parasitemia/Ellipse.fs @@ -2,6 +2,7 @@ open System open System.Collections.Generic +open System.Drawing open Emgu.CV open Emgu.CV.Structure @@ -9,12 +10,12 @@ open Emgu.CV.Structure open Utils open Config open MatchingEllipses - +open Const type private SearchExtremum = Minimum | Maximum let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) = - let gr = 1.0 / 1.6180339887498948482 + let gr = 1. / 1.6180339887498948482 let mutable a = xmin let mutable b = xmax let mutable c = b - gr * (b - a) @@ -40,14 +41,14 @@ let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) c <- d d <- a + gr * (b - a) - let x = (b + a) / 2.0 + let x = (b + a) / 2. x, f x // Ellipse.A is always equal or greater than Ellipse.B. // Ellipse.Alpha is between 0 and Pi. let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = - let accuracy_extremum_search_1 = 8 // 3 - let accuracy_extremum_search_2 = 8 // 4 + let accuracy_extremum_search_1 = 10 // 3 + let accuracy_extremum_search_2 = 10 // 4 // p3 as the referencial. let p1x = p1x - p3x @@ -60,27 +61,27 @@ let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: let alpha1 = atan m1 let alpha2 = atan m2 - let r1 = sqrt (p1x ** 2.0 + p1y ** 2.0) + let r1 = sqrt (p1x ** 2. + p1y ** 2.) let theta1 = atan2 p1y p1x - let r2 = sqrt (p2x**2.0 + p2y**2.0) + let r2 = sqrt (p2x ** 2. + p2y ** 2.) let theta2 = atan2 p2y p2x let valid = - 4.0 * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * + 4. * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) + - r1 * r2 * sin (alpha1 - alpha2) ** 2.0 * sin (theta1 - theta2) ** 2.0 < 0.0 + r1 * r2 * sin (alpha1 - alpha2) ** 2. * sin (theta1 - theta2) ** 2. < 0. if valid then let r theta = (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.0) + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) let rabs = r >> abs // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0.0 Math.PI Maximum + let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0. Math.PI Maximum let rTan = r thetaTan let PTanx = rTan * cos thetaTan @@ -92,7 +93,7 @@ let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: let d2a = tan alpha2 let d2b = -d2a * p2x + p2y - let d3a = -1.0 / tan thetaTan + let d3a = -1. / tan thetaTan let d3b = -d3a * PTanx + PTany let Ux = -(d1b - d2b) / (d1a - d2a) @@ -101,11 +102,11 @@ let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: let Vx = -(d1b - d3b) / (d1a - d3a) let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a) - let Wx = p1x + (p2x - p1x) / 2.0 - let Wy = p1y + (p2y - p1y) / 2.0 + let Wx = p1x + (p2x - p1x) / 2. + let Wy = p1y + (p2y - p1y) / 2. - let Zx = p1x + (PTanx - p1x) / 2.0 - let Zy = p1y + (PTany - p1y) / 2.0 + let Zx = p1x + (PTanx - p1x) / 2. + let Zy = p1y + (PTany - p1y) / 2. let va = -(-Vy + Zy) / (Vx - Zx) let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx) @@ -116,25 +117,25 @@ let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: let cx = -(vb - ub) / (va - ua) let cy = -(ua * vb - va * ub) / (va - ua) - let rc = sqrt (cx**2.0 + cy**2.0) + let rc = sqrt (cx ** 2. + cy ** 2.) let psi = atan2 cy cx let rellipse theta = sqrt ( - rc ** 2.0 + (r1 ** 2.0 * r2 ** 2.0 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2.0 * sin (theta1 - theta2) ** 2.0) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.0) ** 2.0 - - (2.0 * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.0)) + rc ** 2. + (r1 ** 2. * r2 ** 2. * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2. * sin (theta1 - theta2) ** 2.) / + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) ** 2. - + (2. * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.)) // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0.0 (Math.PI / 2.0) Maximum // Pi/2 and not pi because the period is Pi. - let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0.0 (Math.PI / 2.0) Minimum + let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Maximum // Pi/2 and not pi because the period is Pi. + let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Minimum let rr1e = r r1eTheta let r1ex = rr1e * cos r1eTheta let r1ey = rr1e * sin r1eTheta let mutable alpha = atan ((r1ey - cy) / (r1ex - cx)) - if alpha < 0.0 + if alpha < 0. then alpha <- alpha + Math.PI @@ -142,37 +143,37 @@ let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: let cx = cx + p3x let cy = cy + p3y - Some (Types.Ellipse(cx, cy, r1e, r2e, alpha)) + Some (Types.Ellipse(float32 cx, float32 cy, float32 r1e, float32 r2e, float32 alpha)) else None -let private vectorRotation (p1x: float) (p1y: float) (v1x: float) (v1y: float) (px: float) (py: float) : float = - let mutable rotation = 1.0 +let private vectorRotation (p1x: float32) (p1y: float32) (v1x: float32) (v1y: float32) (px: float32) (py: float32) : float32 = + let mutable rotation = 1.f if p1y > py then - if v1x > 0.0 + if v1x > 0.f then - rotation <- -1.0 + rotation <- -1.f elif p1y < py then - if v1x < 0.0 + if v1x < 0.f then - rotation <- -1.0 + rotation <- -1.f elif p1x > px then - if v1y < 0.0 + if v1y < 0.f then - rotation <- -1.0 + rotation <- -1.f elif p1x < px then - if v1y > 0.0 + if v1y > 0.f then - rotation <- -1.0 + rotation <- -1.f rotation -let private areVectorsValid (p1x: float) (p1y: float) (p2x: float) (p2y: float) (v1x: float) (v1y: float) (v2x: float) (v2y: float) : (float * float) option = +let private areVectorsValid (p1x: float32) (p1y: float32) (p2x: float32) (p2y: float32) (v1x: float32) (v1y: float32) (v2x: float32) (v2y: float32) : (float32 * float32) option = let m1 = -v1x / v1y let m2 = -v2x / v2y @@ -191,12 +192,12 @@ let private areVectorsValid (p1x: float) (p1y: float) (p2x: float) (p2y: float) let alpha1 = atan2 (p1y - py) (p1x - px) let alpha2 = atan2 (p2y - py) (p2x - px) - let alpha1' = if alpha1 < 0.0 then 2.0 * Math.PI + alpha1 else alpha1 - let alpha2' = if alpha2 < 0.0 then 2.0 * Math.PI + alpha2 else alpha2 + let alpha1' = if alpha1 < 0.f then 2.f * PI + alpha1 else alpha1 + let alpha2' = if alpha2 < 0.f then 2.f * PI + alpha2 else alpha2 let diff = rot1 * alpha1' + rot2 * alpha2' - if diff > Math.PI || (diff < 0.0 && diff > -Math.PI) + if diff > PI || (diff < 0.f && diff > -PI) then None else @@ -204,27 +205,32 @@ let private areVectorsValid (p1x: float) (p1y: float) (p2x: float) (p2y: float) let find (edges: Matrix) - (xGradient: Image) - (yGradient: Image) + (xGradient: Image) + (yGradient: Image) (config: Config) : MatchingEllipses = - let r1, r2 = config.RBCMinRadius, config.RBCMaxRadius - let windowSize = roundInt (config.Parameters.factorWindowSize * r2) + let r1, r2 = config.RBCRadius.Min, config.RBCRadius.Max + let incrementWindowDivisor = 4.f + + // We choose a window size for which the biggest ellipse can always be fitted in. + let windowSize = roundInt (2.f * r2 / (incrementWindowDivisor - 1.f) * incrementWindowDivisor) let factorNbPick = config.Parameters.factorNbPick - let increment = windowSize / 4 + let increment = windowSize / (int incrementWindowDivisor) - let radiusTolerance = (r2 - r1) * 0.2 + let radiusTolerance = (r2 - r1) * 0.2f - let minimumDistance = (r2 / 1.5) ** 2.0 - let squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2.0 + (y1 - y2) ** 2.0 + let squaredMinimumDistance = (float r2 / 1.5) ** 2. + let inline squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2. + (y1 - y2) ** 2. let h = edges.Height let w = edges.Width + let h_f = float32 h + let w_f = float32 w let mutable last_i, last_j = Int32.MaxValue, Int32.MaxValue - let currentElements = List<(int * int)>() + let currentElements = List() let edgesData = edges.Data let xDirData = xGradient.Data @@ -243,40 +249,40 @@ let find (edges: Matrix) let window_j_end = if window_j + windowSize - 1 >= w then w - 1 else window_j + windowSize - 1 // Remove old elements. - let indexFirstElement = currentElements.FindIndex(fun (_, pj) -> pj >= window_j) + let indexFirstElement = currentElements.FindIndex(fun p -> p.X >= window_j_begin) if indexFirstElement > 0 then currentElements.RemoveRange(0, indexFirstElement) // Add the new elements. - for j in window_j + windowSize - increment .. window_j + windowSize - 1 do + let newElemsBegin_j = window_j + windowSize - increment + let newElemsEnd_j = window_j + windowSize - 1 + for j in (if newElemsBegin_j < 0 then 0 else newElemsBegin_j) .. (if newElemsEnd_j >= w then w - 1 else newElemsEnd_j) do for i in window_i_begin .. window_i_end do - if j >= 0 && j < w && edgesData.[i, j] = 1uy - then currentElements.Add((i, j)) + if edgesData.[i, j] = 1uy + then currentElements.Add(Point(j, i)) if currentElements.Count >= 10 then let mutable nbOfPicks = (float currentElements.Count) * factorNbPick |> int while nbOfPicks > 0 do - let (p1y, p1x) as p1 = currentElements.[rng.Next(currentElements.Count)] - let (p2y, p2x) as p2 = currentElements.[rng.Next(currentElements.Count)] - let (p3y, p3x) as p3 = currentElements.[rng.Next(currentElements.Count)] + let p1 = currentElements.[rng.Next(currentElements.Count)] + let p2 = currentElements.[rng.Next(currentElements.Count)] + let p3 = currentElements.[rng.Next(currentElements.Count)] if p1 <> p2 && p1 <> p3 && p2 <> p3 then nbOfPicks <- nbOfPicks - 1 - let p1yf, p1xf = float p1y, float p1x - let p2yf, p2xf = float p2y, float p2x - let p3yf, p3xf = float p3y, float p3x - if squaredDistance p1xf p1yf p2xf p2yf >= minimumDistance && - squaredDistance p1xf p1yf p3xf p3yf >= minimumDistance && - squaredDistance p2xf p2yf p3xf p3yf >= minimumDistance + let p1yf, p1xf = float p1.Y, float p1.X + let p2yf, p2xf = float p2.Y, float p2.X + let p3yf, p3xf = float p3.Y, float p3.X + if squaredDistance p1xf p1yf p2xf p2yf >= squaredMinimumDistance && + squaredDistance p1xf p1yf p3xf p3yf >= squaredMinimumDistance && + squaredDistance p2xf p2yf p3xf p3yf >= squaredMinimumDistance then - match areVectorsValid p1xf p1yf p2xf p2yf -xDirData.[p1y, p1x, 0] -yDirData.[p1y, p1x, 0] -xDirData.[p2y, p2x, 0] -yDirData.[p2y, p2x, 0] with + match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X, 0] -yDirData.[p1.Y, p1.X, 0] -xDirData.[p2.Y, p2.X, 0] -yDirData.[p2.Y, p2.X, 0] with | Some (m1, m2) -> - match ellipse p1xf p1yf m1 p2xf p2yf m2 p3xf p3yf with - | Some e when e.Cx > 0.0 && e.Cx < (float w) - 1.0 && e.Cy > 0.0 && e.Cy < (float h) - 1.0 && + match ellipse p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with + | Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f && e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance -> - - let prout = areVectorsValid p1xf p1yf p2xf p2yf -xDirData.[p1y, p1x, 0] -yDirData.[p1y, p1x, 0] -xDirData.[p2y, p2x, 0] -yDirData.[p2y, p2x, 0] ellipses.Add e | _ -> () | _ -> ()