X-Git-Url: http://git.euphorik.ch/?p=master-thesis.git;a=blobdiff_plain;f=Parasitemia%2FParasitemia%2FEllipse.fs;h=33333bf57d91dd7408e00d942fa63ad83d6127cc;hp=5bfcc333026a877bd637890d40c76037a1ce9966;hb=84fdf7404133803fdf0dc867a4da68a144975191;hpb=dec96d50e56e1932bbfa09e6bedf90d6b707ccbd diff --git a/Parasitemia/Parasitemia/Ellipse.fs b/Parasitemia/Parasitemia/Ellipse.fs index 5bfcc33..33333bf 100644 --- a/Parasitemia/Parasitemia/Ellipse.fs +++ b/Parasitemia/Parasitemia/Ellipse.fs @@ -7,28 +7,29 @@ open Emgu.CV open Emgu.CV.Structure open Utils +open Config open MatchingEllipses type private SearchExtremum = Minimum | Maximum - + let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) = let gr = 1.0 / 1.6180339887498948482 let mutable a = xmin let mutable b = xmax let mutable c = b - gr * (b - a) let mutable d = a + gr * (b - a) - + for i in 1 .. nbIter do let mutable fc = f c let mutable fd = f d - + if searchExtremum = Maximum then let tmp = fc fc <- fd fd <- tmp - + if fc < fd then b <- d @@ -38,103 +39,105 @@ let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) a <- c c <- d d <- a + gr * (b - a) - + let x = (b + a) / 2.0 x, f x +// Ellipse.A is always equal or greater than Ellipse.B. +// Ellipse.Alpha is between 0 and Pi. let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = - let accuracy_extremum_search_1 = 4 - let accuracy_extremum_search_2 = 3 + let accuracy_extremum_search_1 = 8 // 3 + let accuracy_extremum_search_2 = 8 // 4 // p3 as the referencial. let p1x = p1x - p3x let p1y = p1y - p3y - + let p2x = p2x - p3x let p2y = p2y - p3y - + // Convert to polar coordinates. let alpha1 = atan m1 let alpha2 = atan m2 - - let r1 = sqrt (p1x**2.0 + p1y**2.0) + + let r1 = sqrt (p1x ** 2.0 + p1y ** 2.0) let theta1 = atan2 p1y p1x let r2 = sqrt (p2x**2.0 + p2y**2.0) let theta2 = atan2 p2y p2x - let valid = - 4.0 * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * + let valid = + 4.0 * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) + - r1 * r2 * sin (alpha1 - alpha2) **2.0 * sin (theta1 - theta2) **2.0 < 0.0 - + r1 * r2 * sin (alpha1 - alpha2) ** 2.0 * sin (theta1 - theta2) ** 2.0 < 0.0 + if valid then - let r theta = + let r theta = (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2))**2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2)**2.0) - + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.0) + let rabs = r >> abs - + // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0.0 Math.PI Maximum let rTan = r thetaTan - + let PTanx = rTan * cos thetaTan let PTany = rTan * sin thetaTan - + let d1a = tan alpha1 let d1b = -d1a * p1x + p1y - + let d2a = tan alpha2 let d2b = -d2a * p2x + p2y - + let d3a = -1.0 / tan thetaTan let d3b = -d3a * PTanx + PTany - + let Ux = -(d1b - d2b) / (d1a - d2a) let Uy = -(d2a * d1b - d1a * d2b) / (d1a - d2a) - + let Vx = -(d1b - d3b) / (d1a - d3a) let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a) - + let Wx = p1x + (p2x - p1x) / 2.0 let Wy = p1y + (p2y - p1y) / 2.0 - + let Zx = p1x + (PTanx - p1x) / 2.0 let Zy = p1y + (PTany - p1y) / 2.0 - + let va = -(-Vy + Zy) / (Vx - Zx) let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx) - + let ua = -(-Uy + Wy) / (Ux - Wx) let ub = -(Wx * Uy - Ux * Wy) / (Ux - Wx) - + let cx = -(vb - ub) / (va - ua) let cy = -(ua * vb - va * ub) / (va - ua) - + let rc = sqrt (cx**2.0 + cy**2.0) let psi = atan2 cy cx - - let rellipse theta = + + let rellipse theta = sqrt ( - rc**2.0 + (r1**2.0 * r2**2.0 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2))**2.0 * sin (theta1 - theta2)**2.0) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2))**2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2)**2.0)**2.0 - + rc ** 2.0 + (r1 ** 2.0 * r2 ** 2.0 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2.0 * sin (theta1 - theta2) ** 2.0) / + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.0) ** 2.0 - (2.0 * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2))**2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2)**2.0)) - - // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. + (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2.0 - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.0)) + + // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0.0 (Math.PI / 2.0) Maximum // Pi/2 and not pi because the period is Pi. let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0.0 (Math.PI / 2.0) Minimum - + let rr1e = r r1eTheta let r1ex = rr1e * cos r1eTheta let r1ey = rr1e * sin r1eTheta let mutable alpha = atan ((r1ey - cy) / (r1ex - cx)) if alpha < 0.0 then - alpha <- alpha + Math.PI - + alpha <- alpha + Math.PI + // Ride off the p3 referential. let cx = cx + p3x let cy = cy + p3y @@ -151,9 +154,9 @@ let private vectorRotation (p1x: float) (p1y: float) (v1x: float) (v1y: float) ( if v1x > 0.0 then rotation <- -1.0 - elif p1y < py + elif p1y < py then - if v1x < 0.0 + if v1x < 0.0 then rotation <- -1.0 elif p1x > px @@ -161,9 +164,9 @@ let private vectorRotation (p1x: float) (p1y: float) (v1x: float) (v1y: float) ( if v1y < 0.0 then rotation <- -1.0 - elif p1x < px + elif p1x < px then - if v1y > 0.0 + if v1y > 0.0 then rotation <- -1.0 rotation @@ -172,32 +175,45 @@ let private vectorRotation (p1x: float) (p1y: float) (v1x: float) (v1y: float) ( let private areVectorsValid (p1x: float) (p1y: float) (p2x: float) (p2y: float) (v1x: float) (v1y: float) (v2x: float) (v2y: float) : (float * float) option = let m1 = -v1x / v1y let m2 = -v2x / v2y - + let b1 = -m1 * p1x + p1y let b2 = -m2 * p2x + p2y - let px = -((b1 - b2)/(m1 - m2)) - let py = -((m2 * b1 - m1 * b2)/(m1 - m2)) - + let px = -((b1 - b2) / (m1 - m2)) + let py = -((m2 * b1 - m1 * b2) / (m1 - m2)) + let rot1 = vectorRotation p1x p1y v1x v1y px py let rot2 = vectorRotation p2x p2y v2x v2y px py - - if rot1 = rot2 || rot1 * atan2 (p1y - py) (p1x - px) + rot2 * atan2 (p2y - py) (p2x - px) <= 0.0 + + if rot1 = rot2 then None else + let alpha1 = atan2 (p1y - py) (p1x - px) + let alpha2 = atan2 (p2y - py) (p2x - px) + + let alpha1' = if alpha1 < 0.0 then 2.0 * Math.PI + alpha1 else alpha1 + let alpha2' = if alpha2 < 0.0 then 2.0 * Math.PI + alpha2 else alpha2 + + let diff = rot1 * alpha1' + rot2 * alpha2' + + if diff > Math.PI || (diff < 0.0 && diff > -Math.PI) + then + None + else Some (m1, m2) let find (edges: Matrix) - (xDir: Image) - (yDir: Image) - (radiusRange: float * float) - (windowSize: int) - (factorNbPick: float) : Types.Ellipse list = + (xDir: Image) + (yDir: Image) + (config: Config) : MatchingEllipses = + + let r1, r2 = config.Parameters.scale * config.RBCMin, config.Parameters.scale * config.RBCMax // FIXME: scale factor should be applied in Config!? + let windowSize = roundInt (config.Parameters.factorWindowSize * r2) + let factorNbPick = config.Parameters.factorNbPick let increment = windowSize / 4 - let r1, r2 = radiusRange let radiusTolerance = (r2 - r1) * 0.2 let minimumDistance = (r2 / 1.5) ** 2.0 @@ -205,7 +221,7 @@ let find (edges: Matrix) let h = edges.Height let w = edges.Width - + let mutable last_i, last_j = Int32.MaxValue, Int32.MaxValue let currentElements = List<(int * int)>() @@ -215,12 +231,12 @@ let find (edges: Matrix) let yDirData = yDir.Data let rng = Random(42) - + let ellipses = MatchingEllipses(r1) - - for window_i in -windowSize + increment .. increment .. h - increment do - for window_j in -windowSize + increment .. increment .. w - increment do - + + for window_i in -windowSize + increment .. increment .. h - increment do + for window_j in -windowSize + increment .. increment .. w - increment do + let window_i_begin = if window_i < 0 then 0 else window_i let window_i_end = if window_i + windowSize - 1 >= h then h - 1 else window_i + windowSize - 1 let window_j_begin = if window_j < 0 then 0 else window_j @@ -257,13 +273,15 @@ let find (edges: Matrix) match areVectorsValid p1xf p1yf p2xf p2yf -xDirData.[p1y, p1x, 0] -yDirData.[p1y, p1x, 0] -xDirData.[p2y, p2x, 0] -yDirData.[p2y, p2x, 0] with | Some (m1, m2) -> match ellipse p1xf p1yf m1 p2xf p2yf m2 p3xf p3yf with - | Some e when e.Cx > 0.0 && e.Cx < (float w) - 1.0 && e.Cy > 0.0 && e.Cy < (float h) - 1.0 && + | Some e when e.Cx > 0.0 && e.Cx < (float w) - 1.0 && e.Cy > 0.0 && e.Cy < (float h) - 1.0 && e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance -> + + let prout = areVectorsValid p1xf p1yf p2xf p2yf -xDirData.[p1y, p1x, 0] -yDirData.[p1y, p1x, 0] -xDirData.[p2y, p2x, 0] -yDirData.[p2y, p2x, 0] ellipses.Add e | _ -> () | _ -> () currentElements.Clear() - - ellipses.Ellipses + + ellipses