module ParasitemiaCore.Ellipse open System open System.Collections.Generic open System.Drawing open MathNet.Numerics.LinearAlgebra open Emgu.CV open Utils open Config open MatchingEllipses open Const // This is a ratio of the biggest radius. let minimumDistanceBetweenDrawnPoints = 0.6 /// /// Try to build an ellipse from three points and two tangents passing by the first and the second point. /// 'Ellipse.A' is always equal or greater than Ellipse.B. /// 'Ellipse.Alpha' is between 0 and Pi. /// let ellipse (p1x : float) (p1y : float) (m1 : float) (p2x : float) (p2y : float) (m2 : float) (p3x : float) (p3y : float) : Types.Ellipse option = let p0 = pointFromTwoLines (Types.Line (float32 m1, float32 (p1y - m1 * p1x))) (Types.Line (float32 m2, float32(p2y - m2 * p2x))) let p0x, p0y = float p0.X, float p0.Y let s = matrix [ [ 1.; 0.; 0. ] [ 0.; 0.; -0.5 ] [ 0.; -0.5; 0. ] ] let v0 = matrix [[ 1.; p0x; p0y ]] let v1 = matrix [[ 1.; p1x; p1y ]] let v2 = matrix [[ 1.; p2x; p2y ]] let v3 = matrix [[ 1.; p3x; p3y ]] let p = (v3.Stack(v1).Stack(v2).Determinant () * v0).Stack(v0.Stack(v3).Stack(v2).Determinant () * v1).Stack(v0.Stack(v1).Stack(v3).Determinant () * v2).Transpose () let conicMat = p * s.Inverse () * p.Transpose () let a = conicMat.[0, 0] let b = conicMat.[0, 1] let c = conicMat.[1, 1] let d = conicMat.[0, 2] let e = conicMat.[1, 2] let f = conicMat.[2, 2] // Center. let cx = b / a let cy = d / a let at = c * f - e ** 2. + (e * d - b * f) * cx + (b * e - c * d) * cy if at = 0. then None else let q = (-1. / at) * (matrix [[ a * f - d ** 2.0; b * d - a * e ]; [ b * d - a * e; a * c - b ** 2.0 ]]) let eigen = q.Evd () let eigenValues = eigen.EigenValues let lambda = eigenValues.[1].Real let mu = eigenValues.[0].Real if lambda <= 0. || mu <= 0. then None else let r1, r2 = 1. / (sqrt lambda), 1. / (sqrt mu) let eigenVectors = eigen.EigenVectors let v_a = eigenVectors.[0, 0] let v_b = eigenVectors.[1, 0] // [0, 1] // Angle against the longest axis. let phi = (if r2 > r1 then atan (v_b / v_a) else atan (v_a / v_b)) let phi' = if phi < 0. then phi + Math.PI else phi let majorAxis, minorAxis = if r1 > r2 then r1, r2 else r2, r1 Some (Types.Ellipse (float32 cx, float32 cy, float32 majorAxis, float32 minorAxis, float32 phi')) // Optimized version of 'ellipse': TODO let ellipse' (p1x : float) (p1y : float) (m1 : float) (p2x : float) (p2y : float) (m2 : float) (p3x : float) (p3y : float) : Types.Ellipse option = ellipse p1x p1y m1 p2x p2y m2 p3x p3y let inline private vectorRotation (px : float32) (py : float32) (vx : float32) (vy : float32) (p0x : float32) (p0y : float32) : float32 = if py > p0y then if vx > 0.f then -1.f else 1.f elif py < p0y then if vx < 0.f then -1.f else 1.f elif px > p0x then if vy < 0.f then -1.f else 1.f else // p1x < px if vy > 0.f then -1.f else 1.f let private areVectorsValid (p1x : float32) (p1y : float32) (p2x : float32) (p2y : float32) (v1x : float32) (v1y : float32) (v2x : float32) (v2y : float32) : (float32 * float32) option = let m1 = -v1x / v1y let m2 = -v2x / v2y let b1 = -m1 * p1x + p1y let b2 = -m2 * p2x + p2y let p0x = -(b1 - b2) / (m1 - m2) let p0y = -(m2 * b1 - m1 * b2) / (m1 - m2) let rot1 = vectorRotation p1x p1y v1x v1y p0x p0y let rot2 = vectorRotation p2x p2y v2x v2y p0x p0y if rot1 = rot2 then None else let alpha1 = let alpha1' = atan2 (p1y - p0y) (p1x - p0x) if alpha1' < 0.f then 2.f * PI + alpha1' else alpha1' let alpha2 = let alpha2' = atan2 (p2y - p0y) (p2x - p0x) if alpha2' < 0.f then 2.f * PI + alpha2' else alpha2' let diff = rot1 * alpha1 + rot2 * alpha2 if diff > PI || (diff < 0.f && diff > -PI) then Some (m1, m2) else None /// /// Build a set of ellipses as a 'MatchingEllipses' object by finding ellipses with the given edges and gradient. /// let find (edges : Matrix) (xGradient : Matrix) (yGradient : Matrix) (config : Config) : MatchingEllipses = let r1, r2 = config.RBCRadius.Min, config.RBCRadius.Max let incrementWindowDivisor = 4.f // We choose a window size for which the biggest ellipse can always be fitted in. let windowSize = roundInt (2.f * r2) let factorNbValidPick = config.Parameters.factorNbValidPick let factorNbMaxPick = config.Parameters.factorNbMaxPick let nbPickElementsMin = config.Parameters.nbPickElementsMin let increment = windowSize / (int incrementWindowDivisor) let radiusTolerance = (r2 - r1) * 0.2f let squaredMinimumDistance = (float config.RBCRadius.Pixel * minimumDistanceBetweenDrawnPoints) ** 2. let inline squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2. + (y1 - y2) ** 2. let h = edges.Height let w = edges.Width let h_f = float32 h let w_f = float32 w let mutable last_i, last_j = Int32.MaxValue, Int32.MaxValue let currentElements = List () let edgesData = edges.Data let xDirData = xGradient.Data let yDirData = yGradient.Data let rng = Random 42 let ellipses = MatchingEllipses config.RBCRadius.Pixel for window_i in -windowSize + increment .. increment .. h - increment do for window_j in -windowSize + increment .. increment .. w - increment do let window_i_begin = if window_i < 0 then 0 else window_i let window_i_end = if window_i + windowSize - 1 >= h then h - 1 else window_i + windowSize - 1 let window_j_begin = if window_j < 0 then 0 else window_j let window_j_end = if window_j + windowSize - 1 >= w then w - 1 else window_j + windowSize - 1 // Remove old elements. let indexFirstElement = currentElements.FindIndex (fun p -> p.X >= window_j_begin) if indexFirstElement > 0 then currentElements.RemoveRange (0, indexFirstElement) // Add the new elements. let newElemsBegin_j = window_j + windowSize - increment let newElemsEnd_j = window_j + windowSize - 1 for j = (if newElemsBegin_j < 0 then 0 else newElemsBegin_j) to (if newElemsEnd_j >= w then w - 1 else newElemsEnd_j) do for i = window_i_begin to window_i_end do if edgesData.[i, j] = 1uy then currentElements.Add (Point (j, i)) if currentElements.Count >= nbPickElementsMin then let mutable nbOfPicks = (float currentElements.Count) * factorNbMaxPick |> int let mutable nbOfValidPicks = (float currentElements.Count) * factorNbValidPick |> int while nbOfPicks > 0 && nbOfValidPicks > 0 do let p1 = currentElements.[rng.Next currentElements.Count] let p2 = currentElements.[rng.Next currentElements.Count] let p3 = currentElements.[rng.Next currentElements.Count] if p1 <> p2 && p1 <> p3 && p2 <> p3 then nbOfPicks <- nbOfPicks - 1 let p1yf, p1xf = float p1.Y, float p1.X let p2yf, p2xf = float p2.Y, float p2.X let p3yf, p3xf = float p3.Y, float p3.X if squaredDistance p1xf p1yf p2xf p2yf >= squaredMinimumDistance && squaredDistance p1xf p1yf p3xf p3yf >= squaredMinimumDistance && squaredDistance p2xf p2yf p3xf p3yf >= squaredMinimumDistance then match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X] -yDirData.[p1.Y, p1.X] -xDirData.[p2.Y, p2.X] -yDirData.[p2.Y, p2.X] with | Some (m1, m2) -> match ellipse p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with | Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f && e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance -> nbOfValidPicks <- nbOfValidPicks - 1 ellipses.Add e | _ -> () | _ -> () currentElements.Clear () ellipses