module ImgTools open System open System.Drawing open System.Collections.Generic open System.Linq open Emgu.CV open Emgu.CV.Structure open Utils open Heap // Normalize image values between 0uy and 255uy. let normalizeAndConvert (img: Image) : Image = let min = ref [| 0.0 |] let minLocation = ref <| [| Point() |] let max = ref [| 0.0 |] let maxLocation = ref <| [| Point() |] img.MinMax(min, max, minLocation, maxLocation) ((img - (!min).[0]) / ((!max).[0] - (!min).[0]) * 255.0).Convert() let gaussianFilter (img : Image<'TColor, 'TDepth>) (standardDeviation : float) : Image<'TColor, 'TDepth> = let size = 2 * int (ceil (4.0 * standardDeviation)) + 1 img.SmoothGaussian(size, size, standardDeviation, standardDeviation) type Points = HashSet let drawPoints (img: Image) (points: Points) (intensity: byte) = for p in points do img.Data.[p.Y, p.X, 0] <- intensity type ExtremumType = | Maxima = 1 | Minima = 2 let findExtremum (img: Image) (extremumType: ExtremumType) : IEnumerable = let w = img.Width let h = img.Height let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |] let imgData = img.Data let suppress: bool[,] = Array2D.zeroCreate h w let result = List>() let flood (start: Point) : List> = let sameLevelToCheck = Stack() let betterLevelToCheck = Stack() betterLevelToCheck.Push(start) let result' = List>() while betterLevelToCheck.Count > 0 do let p = betterLevelToCheck.Pop() if not suppress.[p.Y, p.X] then suppress.[p.Y, p.X] <- true sameLevelToCheck.Push(p) let current = List() let mutable betterExists = false while sameLevelToCheck.Count > 0 do let p' = sameLevelToCheck.Pop() let currentLevel = imgData.[p'.Y, p'.X, 0] current.Add(p') |> ignore for i, j in se do let ni = i + p'.Y let nj = j + p'.X if ni >= 0 && ni < h && nj >= 0 && nj < w then let level = imgData.[ni, nj, 0] let notSuppressed = not suppress.[ni, nj] if level = currentLevel && notSuppressed then suppress.[ni, nj] <- true sameLevelToCheck.Push(Point(nj, ni)) elif if extremumType = ExtremumType.Maxima then level > currentLevel else level < currentLevel then betterExists <- true if notSuppressed then betterLevelToCheck.Push(Point(nj, ni)) if not betterExists then result'.Add(current) result' for i in 0 .. h - 1 do for j in 0 .. w - 1 do let maxima = flood (Point(j, i)) if maxima.Count > 0 then result.AddRange(maxima) result.Select(fun l -> Points(l)) let findMaxima (img: Image) : IEnumerable = findExtremum img ExtremumType.Maxima let findMinima (img: Image) : IEnumerable = findExtremum img ExtremumType.Minima type PriorityQueue () = let size = 256 let q: Points[] = Array.init size (fun i -> Points()) let mutable highest = -1 // Value of the first elements of 'q'. let mutable lowest = size member this.NextMax () : byte * Point = if this.IsEmpty then invalidOp "Queue is empty" else let l = q.[highest] let next = l.First() l.Remove(next) |> ignore let value = byte highest if l.Count = 0 then highest <- highest - 1 while highest > lowest && q.[highest].Count = 0 do highest <- highest - 1 if highest = lowest then highest <- -1 lowest <- size value, next member this.NextMin () : byte * Point = if this.IsEmpty then invalidOp "Queue is empty" else let l = q.[lowest + 1] let next = l.First() l.Remove(next) |> ignore let value = byte (lowest + 1) if l.Count = 0 then lowest <- lowest + 1 while lowest < highest && q.[lowest + 1].Count = 0 do lowest <- lowest + 1 if highest = lowest then highest <- -1 lowest <- size value, next member this.Max = highest |> byte member this.Min = lowest + 1 |> byte member this.Add (value: byte) (p: Point) = let vi = int value if vi > highest then highest <- vi if vi <= lowest then lowest <- vi - 1 q.[vi].Add(p) |> ignore member this.Remove (value: byte) (p: Point) = let vi = int value if q.[vi].Remove(p) && q.[vi].Count = 0 then if vi = highest then highest <- highest - 1 while highest > lowest && q.[highest].Count = 0 do highest <- highest - 1 elif vi - 1 = lowest then lowest <- lowest + 1 while lowest < highest && q.[lowest + 1].Count = 0 do lowest <- lowest + 1 if highest = lowest // The queue is now empty. then highest <- -1 lowest <- size member this.IsEmpty = highest = -1 member this.Clear () = while highest > lowest do q.[highest].Clear() highest <- highest - 1 highest <- -1 lowest <- size type private AreaState = | Removed = 1 | Unprocessed = 2 | Validated = 3 type private AreaOperation = | Opening = 1 | Closing = 2 [] type private Area (elements: Points) = member this.Elements = elements member val Intensity = None with get, set member val State = AreaState.Unprocessed with get, set let private areaOperation (img: Image) (area: int) (op: AreaOperation) = let w = img.Width let h = img.Height let imgData = img.Data let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |] let areas = List((if op = AreaOperation.Opening then findMaxima img else findMinima img) |> Seq.map Area) let pixels: Area[,] = Array2D.create h w null for m in areas do for e in m.Elements do pixels.[e.Y, e.X] <- m let queue = PriorityQueue() let addEdgeToQueue (elements: Points) = for p in elements do for i, j in se do let ni = i + p.Y let nj = j + p.X let p' = Point(nj, ni) if ni >= 0 && ni < h && nj >= 0 && nj < w && not (elements.Contains(p')) then queue.Add (imgData.[ni, nj, 0]) p' // Reverse order is quicker. for i in areas.Count - 1 .. -1 .. 0 do let m = areas.[i] if m.Elements.Count <= area && m.State <> AreaState.Removed then queue.Clear() addEdgeToQueue m.Elements let mutable intensity = if op = AreaOperation.Opening then queue.Max else queue.Min let nextElements = Points() let mutable stop = false while not stop do let intensity', p = if op = AreaOperation.Opening then queue.NextMax () else queue.NextMin () let mutable merged = false if intensity' = intensity // The intensity doesn't change. then if m.Elements.Count + nextElements.Count + 1 > area then m.State <- AreaState.Validated m.Intensity <- Some intensity stop <- true else nextElements.Add(p) |> ignore elif if op = AreaOperation.Opening then intensity' < intensity else intensity' > intensity then m.Elements.UnionWith(nextElements) for e in nextElements do pixels.[e.Y, e.X] <- m if m.Elements.Count = area then m.State <- AreaState.Validated m.Intensity <- Some (intensity') stop <- true else intensity <- intensity' nextElements.Clear() nextElements.Add(p) |> ignore else let m' = pixels.[p.Y, p.X] if m' <> null then if m'.Elements.Count + m.Elements.Count <= area then m'.State <- AreaState.Removed for e in m'.Elements do pixels.[e.Y, e.X] <- m queue.Remove imgData.[e.Y, e.X, 0] e addEdgeToQueue m'.Elements m.Elements.UnionWith(m'.Elements) let intensityMax = if op = AreaOperation.Opening then queue.Max else queue.Min if intensityMax <> intensity then intensity <- intensityMax nextElements.Clear() merged <- true if not merged then m.State <- AreaState.Validated m.Intensity <- Some (intensity) stop <- true if not stop && not merged then for i, j in se do let ni = i + p.Y let nj = j + p.X let p' = Point(nj, ni) if ni < 0 || ni >= h || nj < 0 || nj >= w then m.State <- AreaState.Validated m.Intensity <- Some (intensity) stop <- true elif not (m.Elements.Contains(p')) && not (nextElements.Contains(p')) then queue.Add (imgData.[ni, nj, 0]) p' if queue.IsEmpty then if m.Elements.Count + nextElements.Count <= area then m.State <- AreaState.Validated m.Intensity <- Some intensity' m.Elements.UnionWith(nextElements) stop <- true for m in areas do if m.State = AreaState.Validated then match m.Intensity with | Some i -> for p in m.Elements do imgData.[p.Y, p.X, 0] <- i | _ -> () () let areaOpen (img: Image) (area: int) = areaOperation img area AreaOperation.Opening let areaClose (img: Image) (area: int) = areaOperation img area AreaOperation.Closing let areaOpen2 (img: Image) (area: int) = let w = img.Width let h = img.Height let imgData = img.Data let se = [| -1, 0; 0, -1; 1, 0; 0, 1 |] let histogram = Array.zeroCreate 256 for i in 0 .. h - 1 do for j in 0 .. w - 1 do let v = imgData.[i, j, 0] |> int histogram.[v] <- histogram.[v] + 1 let flooded : bool[,] = Array2D.zeroCreate h w let pointsChecked = HashSet() let pointsToCheck = Stack() for level in 255 .. -1 .. 0 do let mutable n = histogram.[level] if n > 0 then for i in 0 .. h - 1 do for j in 0 .. w - 1 do if not flooded.[i, j] && imgData.[i, j, 0] = byte level then let mutable maxNeighborValue = 0uy pointsChecked.Clear() pointsToCheck.Clear() pointsToCheck.Push(Point(j, i)) while pointsToCheck.Count > 0 do let next = pointsToCheck.Pop() pointsChecked.Add(next) |> ignore flooded.[next.Y, next.X] <- true for nx, ny in se do let p = Point(next.X + nx, next.Y + ny) if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h then let v = imgData.[p.Y, p.X, 0] if v = byte level then if not (pointsChecked.Contains(p)) then pointsToCheck.Push(p) elif v > maxNeighborValue then maxNeighborValue <- v if int maxNeighborValue < level && pointsChecked.Count <= area then for p in pointsChecked do imgData.[p.Y, p.X, 0] <- maxNeighborValue // Zhang and Suen algorithm. // Modify 'mat' in place. let thin (mat: Matrix) = let w = mat.Width let h = mat.Height let mutable data1 = mat.Data let mutable data2 = Array2D.copy data1 let mutable pixelChanged = true let mutable oddIteration = true while pixelChanged do pixelChanged <- false for i in 0..h-1 do for j in 0..w-1 do if data1.[i, j] = 1uy then let p2 = if i = 0 then 0uy else data1.[i-1, j] let p3 = if i = 0 || j = w-1 then 0uy else data1.[i-1, j+1] let p4 = if j = w-1 then 0uy else data1.[i, j+1] let p5 = if i = h-1 || j = w-1 then 0uy else data1.[i+1, j+1] let p6 = if i = h-1 then 0uy else data1.[i+1, j] let p7 = if i = h-1 || j = 0 then 0uy else data1.[i+1, j-1] let p8 = if j = 0 then 0uy else data1.[i, j-1] let p9 = if i = 0 || j = 0 then 0uy else data1.[i-1, j-1] let sumNeighbors = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 if sumNeighbors >= 2uy && sumNeighbors <= 6uy && (if p2 = 0uy && p3 = 1uy then 1 else 0) + (if p3 = 0uy && p4 = 1uy then 1 else 0) + (if p4 = 0uy && p5 = 1uy then 1 else 0) + (if p5 = 0uy && p6 = 1uy then 1 else 0) + (if p6 = 0uy && p7 = 1uy then 1 else 0) + (if p7 = 0uy && p8 = 1uy then 1 else 0) + (if p8 = 0uy && p9 = 1uy then 1 else 0) + (if p9 = 0uy && p2 = 1uy then 1 else 0) = 1 && if oddIteration then p2 * p4 * p6 = 0uy && p4 * p6 * p8 = 0uy else p2 * p4 * p8 = 0uy && p2 * p6 * p8 = 0uy then data2.[i, j] <- 0uy pixelChanged <- true else data2.[i, j] <- 0uy oddIteration <- not oddIteration let tmp = data1 data1 <- data2 data2 <- tmp // FIXME: replace by a queue or stack. let pop (l: List<'a>) : 'a = let n = l.[l.Count - 1] l.RemoveAt(l.Count - 1) n // Remove all 8-connected pixels with an area equal or greater than 'areaSize'. // Modify 'mat' in place. let removeArea (mat: Matrix) (areaSize: int) = let neighbors = [| (-1, 0) // p2 (-1, 1) // p3 ( 0, 1) // p4 ( 1, 1) // p5 ( 1, 0) // p6 ( 1, -1) // p7 ( 0, -1) // p8 (-1, -1) |] // p9 let mat' = new Matrix(mat.Size) let w = mat'.Width let h = mat'.Height mat.CopyTo(mat') let data = mat.Data let data' = mat'.Data for i in 0..h-1 do for j in 0..w-1 do if data'.[i, j] = 1uy then let neighborhood = List<(int*int)>() let neighborsToCheck = List<(int*int)>() neighborsToCheck.Add((i, j)) data'.[i, j] <- 0uy while neighborsToCheck.Count > 0 do let (ci, cj) = pop neighborsToCheck neighborhood.Add((ci, cj)) for (ni, nj) in neighbors do let pi = ci + ni let pj = cj + nj if pi >= 0 && pi < h && pj >= 0 && pj < w && data'.[pi, pj] = 1uy then neighborsToCheck.Add((pi, pj)) data'.[pi, pj] <- 0uy if neighborhood.Count <= areaSize then for (ni, nj) in neighborhood do data.[ni, nj] <- 0uy let connectedComponents (img: Image) (startPoints: List) : List = let w = img.Width let h = img.Height let pointChecked = Points() let pointToCheck = List(startPoints); let data = img.Data while pointToCheck.Count > 0 do let next = pop pointToCheck pointChecked.Add(next) |> ignore for ny in -1 .. 1 do for nx in -1 .. 1 do if ny <> 0 && nx <> 0 then let p = Point(next.X + nx, next.Y + ny) if p.X >= 0 && p.X < w && p.Y >= 0 && p.Y < h && data.[p.Y, p.X, 0] > 0uy && not (pointChecked.Contains p) then pointToCheck.Add(p) List(pointChecked) let saveImg (img: Image<'TColor, 'TDepth>) (filepath: string) = img.Save(filepath) let saveMat (mat: Matrix<'TDepth>) (filepath: string) = use img = new Image(mat.Size) mat.CopyTo(img) saveImg img filepath let drawLine (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: int) (y0: int) (x1: int) (y1: int) (thickness: int) = img.Draw(LineSegment2D(Point(x0, y0), Point(x1, y1)), color, thickness); let drawLineF (img: Image<'TColor, 'TDepth>) (color: 'TColor) (x0: float) (y0: float) (x1: float) (y1: float) (thickness: int) = img.Draw(LineSegment2DF(PointF(float32 x0, float32 y0), PointF(float32 x1, float32 y1)), color, thickness, CvEnum.LineType.AntiAlias); let drawEllipse (img: Image<'TColor, 'TDepth>) (e: Types.Ellipse) (color: 'TColor) (alpha: float) = if alpha >= 1.0 then img.Draw(Ellipse(PointF(float32 e.Cx, float32 e.Cy), SizeF(2. * e.B |> float32, 2. * e.A |> float32), float32 <| e.Alpha / Math.PI * 180.), color, 1, CvEnum.LineType.AntiAlias) else let windowPosX = e.Cx - e.A - 5.0 let gapX = windowPosX - (float (int windowPosX)) let windowPosY = e.Cy - e.A - 5.0 let gapY = windowPosY - (float (int windowPosY)) let roi = Rectangle(int windowPosX, int windowPosY, 2. * (e.A + 5.0) |> int, 2.* (e.A + 5.0) |> int) img.ROI <- roi if roi = img.ROI // We do not display ellipses touching the edges (FIXME) then use i = new Image<'TColor, 'TDepth>(img.ROI.Size) i.Draw(Ellipse(PointF(float32 <| (e.A + 5. + gapX) , float32 <| (e.A + 5. + gapY)), SizeF(2. * e.B |> float32, 2. * e.A |> float32), float32 <| e.Alpha / Math.PI * 180.), color, 1, CvEnum.LineType.AntiAlias) CvInvoke.AddWeighted(img, 1.0, i, alpha, 0.0, img) img.ROI <- Rectangle.Empty let drawEllipses (img: Image<'TColor, 'TDepth>) (ellipses: Types.Ellipse list) (color: 'TColor) (alpha: float) = List.iter (fun e -> drawEllipse img e color alpha) ellipses let rngCell = System.Random() let drawCell (img: Image) (drawCellContent: bool) (c: Types.Cell) = if drawCellContent then let colorB = rngCell.Next(20, 70) let colorG = rngCell.Next(20, 70) let colorR = rngCell.Next(20, 70) for y in 0 .. c.elements.Height - 1 do for x in 0 .. c.elements.Width - 1 do if c.elements.[y, x] > 0uy then let dx, dy = c.center.X - c.elements.Width / 2, c.center.Y - c.elements.Height / 2 let b = img.Data.[y + dy, x + dx, 0] |> int let g = img.Data.[y + dy, x + dx, 1] |> int let r = img.Data.[y + dy, x + dx, 2] |> int img.Data.[y + dy, x + dx, 0] <- if b + colorB > 255 then 255uy else byte (b + colorB) img.Data.[y + dy, x + dx, 1] <- if g + colorG > 255 then 255uy else byte (g + colorG) img.Data.[y + dy, x + dx, 2] <- if r + colorR > 255 then 255uy else byte (r + colorR) let crossColor, crossColor2 = match c.cellClass with | Types.HealthyRBC -> Bgr(255., 0., 0.), Bgr(255., 255., 255.) | Types.InfectedRBC -> Bgr(0., 0., 255.), Bgr(120., 120., 255.) | Types.Peculiar -> Bgr(0., 0., 0.), Bgr(80., 80., 80.) drawLine img crossColor2 (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 2 drawLine img crossColor2 c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 2 drawLine img crossColor (c.center.X - 3) c.center.Y (c.center.X + 3) c.center.Y 1 drawLine img crossColor c.center.X (c.center.Y - 3) c.center.X (c.center.Y + 3) 1 let drawCells (img: Image) (drawCellContent: bool) (cells: Types.Cell list) = List.iter (fun c -> drawCell img drawCellContent c) cells