X-Git-Url: http://git.euphorik.ch/?a=blobdiff_plain;f=Parasitemia%2FParasitemiaCore%2FEllipse.fs;h=cf55a8eb2f68ddee0372dd435e597ae66cb599c9;hb=bb642da712542095d8c5ead2d0d036470eb040b9;hp=e65100b343f46ddba67e4d3f00898c9bb06f3706;hpb=97c24aa168f06f507fdff79429038d78a2c33326;p=master-thesis.git diff --git a/Parasitemia/ParasitemiaCore/Ellipse.fs b/Parasitemia/ParasitemiaCore/Ellipse.fs index e65100b..cf55a8e 100644 --- a/Parasitemia/ParasitemiaCore/Ellipse.fs +++ b/Parasitemia/ParasitemiaCore/Ellipse.fs @@ -14,142 +14,15 @@ open Config open MatchingEllipses open Const -type private SearchExtremum = Minimum | Maximum - -let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) = - let gr = 1. / 1.6180339887498948482 - let mutable a = xmin - let mutable b = xmax - let mutable c = b - gr * (b - a) - let mutable d = a + gr * (b - a) - - for i in 1 .. nbIter do - let mutable fc = f c - let mutable fd = f d - - if searchExtremum = Maximum - then - let tmp = fc - fc <- fd - fd <- tmp - - if fc < fd - then - b <- d - d <- c - c <- b - gr * (b - a) - else - a <- c - c <- d - d <- a + gr * (b - a) - - let x = (b + a) / 2. - x, f x - -// Ellipse.A is always equal or greater than Ellipse.B. -// Ellipse.Alpha is between 0 and Pi. +// This is a ratio of the biggest radius. +let minimumDistanceBetweenDrawnPoints = 0.6 + +/// +/// Try to build an ellipse from three points and two tangents passing by the first and the second point. +/// 'Ellipse.A' is always equal or greater than Ellipse.B. +/// 'Ellipse.Alpha' is between 0 and Pi. +/// let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = - let accuracy_extremum_search_1 = 10 // 3 - let accuracy_extremum_search_2 = 10 // 4 - - // p3 as the referencial. - let p1x = p1x - p3x - let p1y = p1y - p3y - - let p2x = p2x - p3x - let p2y = p2y - p3y - - // Convert to polar coordinates. - let alpha1 = atan m1 - let alpha2 = atan m2 - - let r1 = sqrt (p1x ** 2. + p1y ** 2.) - let theta1 = atan2 p1y p1x - - let r2 = sqrt (p2x ** 2. + p2y ** 2.) - let theta2 = atan2 p2y p2x - - let valid = - 4. * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * - sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) + - r1 * r2 * sin (alpha1 - alpha2) ** 2. * sin (theta1 - theta2) ** 2. < 0. - - if valid - then - let r theta = - (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) - - let rabs = r >> abs - - // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0. Math.PI Maximum - let rTan = r thetaTan - - let PTanx = rTan * cos thetaTan - let PTany = rTan * sin thetaTan - - let d1a = tan alpha1 - let d1b = -d1a * p1x + p1y - - let d2a = tan alpha2 - let d2b = -d2a * p2x + p2y - - let d3a = -1. / tan thetaTan - let d3b = -d3a * PTanx + PTany - - let Ux = -(d1b - d2b) / (d1a - d2a) - let Uy = -(d2a * d1b - d1a * d2b) / (d1a - d2a) - - let Vx = -(d1b - d3b) / (d1a - d3a) - let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a) - - let Wx = p1x + (p2x - p1x) / 2. - let Wy = p1y + (p2y - p1y) / 2. - - let Zx = p1x + (PTanx - p1x) / 2. - let Zy = p1y + (PTany - p1y) / 2. - - let va = -(-Vy + Zy) / (Vx - Zx) - let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx) - - let ua = -(-Uy + Wy) / (Ux - Wx) - let ub = -(Wx * Uy - Ux * Wy) / (Ux - Wx) - - let cx = -(vb - ub) / (va - ua) - let cy = -(ua * vb - va * ub) / (va - ua) - - let rc = sqrt (cx ** 2. + cy ** 2.) - let psi = atan2 cy cx - - let rellipse theta = - sqrt ( - rc ** 2. + (r1 ** 2. * r2 ** 2. * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2. * sin (theta1 - theta2) ** 2.) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) ** 2. - - (2. * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.)) - - // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Maximum // Pi/2 and not pi because the period is Pi. - let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Minimum - - let rr1e = r r1eTheta - let r1ex = rr1e * cos r1eTheta - let r1ey = rr1e * sin r1eTheta - let mutable alpha = atan ((r1ey - cy) / (r1ex - cx)) - if alpha < 0. - then - alpha <- alpha + Math.PI - - // Ride off the p3 referential. - let cx = cx + p3x - let cy = cy + p3y - - Some (Types.Ellipse(float32 cx, float32 cy, float32 r1e, float32 r2e, float32 alpha)) - else - None - -let ellipse2 (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = let p0 = pointFromTwoLines (Types.Line(float32 m1, float32 (p1y - m1 * p1x))) (Types.Line(float32 m2, float32(p2y - m2 * p2x))) let p0x, p0y = float p0.X, float p0.Y @@ -206,28 +79,17 @@ let ellipse2 (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2 let private vectorRotation (p1x: float32) (p1y: float32) (v1x: float32) (v1y: float32) (px: float32) (py: float32) : float32 = - let mutable rotation = 1.f if p1y > py then - if v1x > 0.f - then - rotation <- -1.f + if v1x > 0.f then -1.f else 1.f elif p1y < py then - if v1x < 0.f - then - rotation <- -1.f + if v1x < 0.f then -1.f else 1.f elif p1x > px then - if v1y < 0.f - then - rotation <- -1.f - elif p1x < px - then - if v1y > 0.f - then - rotation <- -1.f - rotation + if v1y < 0.f then -1.f else 1.f + else // p1x < px + if v1y > 0.f then -1.f else 1.f let private areVectorsValid (p1x: float32) (p1y: float32) (p2x: float32) (p2y: float32) (v1x: float32) (v1y: float32) (v2x: float32) (v2y: float32) : (float32 * float32) option = let m1 = -v1x / v1y @@ -255,14 +117,13 @@ let private areVectorsValid (p1x: float32) (p1y: float32) (p2x: float32) (p2y: f if diff > PI || (diff < 0.f && diff > -PI) then - None + Some (m1, m2) else - Some (m1, m2) - + None let find (edges: Matrix) - (xGradient: Image) - (yGradient: Image) + (xGradient: Matrix) + (yGradient: Matrix) (config: Config) : MatchingEllipses = let r1, r2 = config.RBCRadius.Min, config.RBCRadius.Max @@ -270,13 +131,15 @@ let find (edges: Matrix) // We choose a window size for which the biggest ellipse can always be fitted in. let windowSize = roundInt (2.f * r2) - let factorNbPick = config.Parameters.factorNbPick + let factorNbValidPick = config.Parameters.factorNbValidPick + let factorNbMaxPick = config.Parameters.factorNbMaxPick + let nbPickElementsMin = config.Parameters.nbPickElementsMin let increment = windowSize / (int incrementWindowDivisor) let radiusTolerance = (r2 - r1) * 0.2f - let squaredMinimumDistance = (float r2 / 1.5) ** 2. + let squaredMinimumDistance = (float config.RBCRadius.Pixel * minimumDistanceBetweenDrawnPoints) ** 2. let inline squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2. + (y1 - y2) ** 2. let h = edges.Height @@ -319,8 +182,9 @@ let find (edges: Matrix) if currentElements.Count >= 10 then - let mutable nbOfPicks = (float currentElements.Count) * factorNbPick |> int - while nbOfPicks > 0 do + let mutable nbOfPicks = (float currentElements.Count) * factorNbMaxPick |> int + let mutable nbOfValidPicks = (float currentElements.Count) * factorNbValidPick |> int + while nbOfPicks > 0 && nbOfValidPicks > 0 do let p1 = currentElements.[rng.Next(currentElements.Count)] let p2 = currentElements.[rng.Next(currentElements.Count)] let p3 = currentElements.[rng.Next(currentElements.Count)] @@ -334,12 +198,13 @@ let find (edges: Matrix) squaredDistance p1xf p1yf p3xf p3yf >= squaredMinimumDistance && squaredDistance p2xf p2yf p3xf p3yf >= squaredMinimumDistance then - match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X, 0] -yDirData.[p1.Y, p1.X, 0] -xDirData.[p2.Y, p2.X, 0] -yDirData.[p2.Y, p2.X, 0] with + match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X] -yDirData.[p1.Y, p1.X] -xDirData.[p2.Y, p2.X] -yDirData.[p2.Y, p2.X] with | Some (m1, m2) -> - match ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with + match ellipse p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with | Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f && e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance -> - ellipses.Add e + nbOfValidPicks <- nbOfValidPicks - 1 + ellipses.Add e | _ -> () | _ -> ()