X-Git-Url: http://git.euphorik.ch/?a=blobdiff_plain;f=Parasitemia%2FParasitemiaCore%2FEllipse.fs;h=01e1bec0bb313024966eee4b83d91da9045c4faf;hb=ec96e4c38dd6beaf22b4e2a2ebb87248fea6f209;hp=520d29d83a9e2d005963a4a9874deef924d099b6;hpb=4bfa3cbdc6145e6944f02e24829ab2ef3a851ac1;p=master-thesis.git diff --git a/Parasitemia/ParasitemiaCore/Ellipse.fs b/Parasitemia/ParasitemiaCore/Ellipse.fs index 520d29d..01e1bec 100644 --- a/Parasitemia/ParasitemiaCore/Ellipse.fs +++ b/Parasitemia/ParasitemiaCore/Ellipse.fs @@ -14,142 +14,15 @@ open Config open MatchingEllipses open Const -type private SearchExtremum = Minimum | Maximum - -let private goldenSectionSearch (f: float -> float) (nbIter: int) (xmin: float) (xmax: float) (searchExtremum: SearchExtremum) : (float * float) = - let gr = 1. / 1.6180339887498948482 - let mutable a = xmin - let mutable b = xmax - let mutable c = b - gr * (b - a) - let mutable d = a + gr * (b - a) - - for i in 1 .. nbIter do - let mutable fc = f c - let mutable fd = f d - - if searchExtremum = Maximum - then - let tmp = fc - fc <- fd - fd <- tmp - - if fc < fd - then - b <- d - d <- c - c <- b - gr * (b - a) - else - a <- c - c <- d - d <- a + gr * (b - a) - - let x = (b + a) / 2. - x, f x - -// Ellipse.A is always equal or greater than Ellipse.B. -// Ellipse.Alpha is between 0 and Pi. +// This is a ratio of the biggest radius. +let minimumDistanceBetweenDrawnPoints = 0.6 + +/// +/// Try to build an ellipse from three points and two tangents passing by the first and the second point. +/// 'Ellipse.A' is always equal or greater than Ellipse.B. +/// 'Ellipse.Alpha' is between 0 and Pi. +/// let ellipse (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = - let accuracy_extremum_search_1 = 10 // 3 - let accuracy_extremum_search_2 = 10 // 4 - - // p3 as the referencial. - let p1x = p1x - p3x - let p1y = p1y - p3y - - let p2x = p2x - p3x - let p2y = p2y - p3y - - // Convert to polar coordinates. - let alpha1 = atan m1 - let alpha2 = atan m2 - - let r1 = sqrt (p1x ** 2. + p1y ** 2.) - let theta1 = atan2 p1y p1x - - let r2 = sqrt (p2x ** 2. + p2y ** 2.) - let theta2 = atan2 p2y p2x - - let valid = - 4. * sin (alpha1 - theta1) * (-r1 * sin (alpha1 - theta1) + r2 * sin (alpha1 - theta2)) * - sin (alpha2 - theta2) * (-r1 * sin (alpha2 - theta1) + r2 * sin (alpha2 - theta2)) + - r1 * r2 * sin (alpha1 - alpha2) ** 2. * sin (theta1 - theta2) ** 2. < 0. - - if valid - then - let r theta = - (r1 * r2 * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) - - let rabs = r >> abs - - // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let thetaTan, _ = goldenSectionSearch rabs accuracy_extremum_search_1 0. Math.PI Maximum - let rTan = r thetaTan - - let PTanx = rTan * cos thetaTan - let PTany = rTan * sin thetaTan - - let d1a = tan alpha1 - let d1b = -d1a * p1x + p1y - - let d2a = tan alpha2 - let d2b = -d2a * p2x + p2y - - let d3a = -1. / tan thetaTan - let d3b = -d3a * PTanx + PTany - - let Ux = -(d1b - d2b) / (d1a - d2a) - let Uy = -(d2a * d1b - d1a * d2b) / (d1a - d2a) - - let Vx = -(d1b - d3b) / (d1a - d3a) - let Vy = -(d3a * d1b - d1a * d3b) / (d1a - d3a) - - let Wx = p1x + (p2x - p1x) / 2. - let Wy = p1y + (p2y - p1y) / 2. - - let Zx = p1x + (PTanx - p1x) / 2. - let Zy = p1y + (PTany - p1y) / 2. - - let va = -(-Vy + Zy) / (Vx - Zx) - let vb = -(Zx * Vy - Vx * Zy) / (Vx - Zx) - - let ua = -(-Uy + Wy) / (Ux - Wx) - let ub = -(Wx * Uy - Ux * Wy) / (Ux - Wx) - - let cx = -(vb - ub) / (va - ua) - let cy = -(ua * vb - va * ub) / (va - ua) - - let rc = sqrt (cx ** 2. + cy ** 2.) - let psi = atan2 cy cx - - let rellipse theta = - sqrt ( - rc ** 2. + (r1 ** 2. * r2 ** 2. * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) ** 2. * sin (theta1 - theta2) ** 2.) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.) ** 2. - - (2. * r1 * r2 * rc * cos (theta - psi) * (r1 * (cos (alpha2 + theta - theta1 - theta2) - cos (alpha2 - theta) * cos (theta1 - theta2)) * sin (alpha1 - theta1) + r2 * (-cos (alpha1 + theta - theta1 - theta2) + cos (alpha1 - theta) * cos (theta1 - theta2)) * sin (alpha2 - theta2)) * sin (theta1 - theta2)) / - (sin (alpha1 - theta1) * sin (alpha2 - theta2) * (r1 * sin (theta - theta1) - r2 * sin (theta - theta2)) ** 2. - r1 * r2 * sin (alpha1 - theta) * sin (alpha2 - theta) * sin (theta1 - theta2) ** 2.)) - - // We search for an interval [theta_a, theta_b] and assume the function is unimodal in this interval. - let r1eTheta, r1e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Maximum // Pi/2 and not pi because the period is Pi. - let r2eTheta, r2e = goldenSectionSearch rellipse accuracy_extremum_search_2 0. (Math.PI / 2.) Minimum - - let rr1e = r r1eTheta - let r1ex = rr1e * cos r1eTheta - let r1ey = rr1e * sin r1eTheta - let mutable alpha = atan ((r1ey - cy) / (r1ex - cx)) - if alpha < 0. - then - alpha <- alpha + Math.PI - - // Ride off the p3 referential. - let cx = cx + p3x - let cy = cy + p3y - - Some (Types.Ellipse(float32 cx, float32 cy, float32 r1e, float32 r2e, float32 alpha)) - else - None - -let ellipse2 (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2: float) (p3x: float) (p3y: float) : Types.Ellipse option = let p0 = pointFromTwoLines (Types.Line(float32 m1, float32 (p1y - m1 * p1x))) (Types.Line(float32 m2, float32(p2y - m2 * p2x))) let p0x, p0y = float p0.X, float p0.Y @@ -204,30 +77,18 @@ let ellipse2 (p1x: float) (p1y: float) (m1: float) (p2x: float) (p2y: float) (m2 Some (Types.Ellipse(float32 cx, float32 cy, float32 majorAxis, float32 minorAxis, float32 phi')) - -let private vectorRotation (p1x: float32) (p1y: float32) (v1x: float32) (v1y: float32) (px: float32) (py: float32) : float32 = - let mutable rotation = 1.f - if p1y > py - then - if v1x > 0.f - then - rotation <- -1.f - elif p1y < py +let inline private vectorRotation (px: float32) (py: float32) (vx: float32) (vy: float32) (p0x: float32) (p0y: float32) : float32 = + if py > p0y then - if v1x < 0.f - then - rotation <- -1.f - elif p1x > px + if vx > 0.f then -1.f else 1.f + elif py < p0y then - if v1y < 0.f - then - rotation <- -1.f - elif p1x < px + if vx < 0.f then -1.f else 1.f + elif px > p0x then - if v1y > 0.f - then - rotation <- -1.f - rotation + if vy < 0.f then -1.f else 1.f + else // p1x < px + if vy > 0.f then -1.f else 1.f let private areVectorsValid (p1x: float32) (p1y: float32) (p2x: float32) (p2y: float32) (v1x: float32) (v1y: float32) (v2x: float32) (v2y: float32) : (float32 * float32) option = let m1 = -v1x / v1y @@ -235,48 +96,54 @@ let private areVectorsValid (p1x: float32) (p1y: float32) (p2x: float32) (p2y: f let b1 = -m1 * p1x + p1y let b2 = -m2 * p2x + p2y - let px = -((b1 - b2) / (m1 - m2)) - let py = -((m2 * b1 - m1 * b2) / (m1 - m2)) + let p0x = -(b1 - b2) / (m1 - m2) + let p0y = -(m2 * b1 - m1 * b2) / (m1 - m2) - let rot1 = vectorRotation p1x p1y v1x v1y px py - let rot2 = vectorRotation p2x p2y v2x v2y px py + let rot1 = vectorRotation p1x p1y v1x v1y p0x p0y + let rot2 = vectorRotation p2x p2y v2x v2y p0x p0y if rot1 = rot2 then None else - let alpha1 = atan2 (p1y - py) (p1x - px) - let alpha2 = atan2 (p2y - py) (p2x - px) + let alpha1 = + let alpha1' = atan2 (p1y - p0y) (p1x - p0x) + if alpha1' < 0.f then 2.f * PI + alpha1' else alpha1' - let alpha1' = if alpha1 < 0.f then 2.f * PI + alpha1 else alpha1 - let alpha2' = if alpha2 < 0.f then 2.f * PI + alpha2 else alpha2 + let alpha2 = + let alpha2' = atan2 (p2y - p0y) (p2x - p0x) + if alpha2' < 0.f then 2.f * PI + alpha2' else alpha2' - let diff = rot1 * alpha1' + rot2 * alpha2' + let diff = rot1 * alpha1 + rot2 * alpha2 if diff > PI || (diff < 0.f && diff > -PI) then - None + Some (m1, m2) else - Some (m1, m2) - + None +/// +/// Build a set of ellipses as a 'MatchingEllipses' object by finding ellipses with the given edges and gradient. +/// let find (edges: Matrix) - (xGradient: Image) - (yGradient: Image) + (xGradient: Matrix) + (yGradient: Matrix) (config: Config) : MatchingEllipses = let r1, r2 = config.RBCRadius.Min, config.RBCRadius.Max let incrementWindowDivisor = 4.f // We choose a window size for which the biggest ellipse can always be fitted in. - let windowSize = roundInt (2.f * r2 / (incrementWindowDivisor - 1.f) * incrementWindowDivisor) - let factorNbPick = config.Parameters.factorNbPick + let windowSize = roundInt (2.f * r2) + let factorNbValidPick = config.Parameters.factorNbValidPick + let factorNbMaxPick = config.Parameters.factorNbMaxPick + let nbPickElementsMin = config.Parameters.nbPickElementsMin let increment = windowSize / (int incrementWindowDivisor) let radiusTolerance = (r2 - r1) * 0.2f - let squaredMinimumDistance = (float r2 / 1.5) ** 2. + let squaredMinimumDistance = (float config.RBCRadius.Pixel * minimumDistanceBetweenDrawnPoints) ** 2. let inline squaredDistance x1 y1 x2 y2 = (x1 - x2) ** 2. + (y1 - y2) ** 2. let h = edges.Height @@ -317,10 +184,11 @@ let find (edges: Matrix) if edgesData.[i, j] = 1uy then currentElements.Add(Point(j, i)) - if currentElements.Count >= 10 + if currentElements.Count >= nbPickElementsMin then - let mutable nbOfPicks = (float currentElements.Count) * factorNbPick |> int - while nbOfPicks > 0 do + let mutable nbOfPicks = (float currentElements.Count) * factorNbMaxPick |> int + let mutable nbOfValidPicks = (float currentElements.Count) * factorNbValidPick |> int + while nbOfPicks > 0 && nbOfValidPicks > 0 do let p1 = currentElements.[rng.Next(currentElements.Count)] let p2 = currentElements.[rng.Next(currentElements.Count)] let p3 = currentElements.[rng.Next(currentElements.Count)] @@ -334,13 +202,13 @@ let find (edges: Matrix) squaredDistance p1xf p1yf p3xf p3yf >= squaredMinimumDistance && squaredDistance p2xf p2yf p3xf p3yf >= squaredMinimumDistance then - match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X, 0] -yDirData.[p1.Y, p1.X, 0] -xDirData.[p2.Y, p2.X, 0] -yDirData.[p2.Y, p2.X, 0] with + match areVectorsValid (float32 p1xf) (float32 p1yf) (float32 p2xf) (float32 p2yf) -xDirData.[p1.Y, p1.X] -yDirData.[p1.Y, p1.X] -xDirData.[p2.Y, p2.X] -yDirData.[p2.Y, p2.X] with | Some (m1, m2) -> - //let pouet = ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf - match ellipse2 p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with - | Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f && + match ellipse p1xf p1yf (float m1) p2xf p2yf (float m2) p3xf p3yf with + | Some e when e.Cx > 0.f && e.Cx < w_f - 1.f && e.Cy > 0.f && e.Cy < h_f - 1.f && e.A >= r1 - radiusTolerance && e.A <= r2 + radiusTolerance && e.B >= r1 - radiusTolerance && e.B <= r2 + radiusTolerance -> - ellipses.Add e + nbOfValidPicks <- nbOfValidPicks - 1 + ellipses.Add e | _ -> () | _ -> ()